
Software Security
Principles, Policies, and Protection

Mathias Payer

July 2021, v0.37

Contents

1 Introduction 1

2 Software and System Security Principles 6
2.1 Authentication 7
2.2 Access Rights 9
2.3 Confidentiality, Integrity, and Availability . . . 9
2.4 Isolation . 12
2.5 Least Privilege 15
2.6 Compartmentalization 16
2.7 Threat Model 17
2.8 Bug versus Vulnerability 20
2.9 Summary . 22

3 Secure Software Life Cycle 24
3.1 Software Design 25
3.2 Software Implementation 27
3.3 Software Testing 28
3.4 Continuous Updates and Patches 29
3.5 Modern Software Engineering 30
3.6 Summary . 31

4 Memory and Type Safety 32
4.1 Pointer Capabilities 34

ii

Contents

4.2 Memory Safety 36
4.2.1 Spatial Memory Safety 37
4.2.2 Temporal Memory Safety 39
4.2.3 A Definition of Memory Safety 40
4.2.4 Practical Memory Safety 40

4.3 Type Safety 44
4.4 Summary . 48

5 Attack Vectors 50
5.1 Denial of Service (DoS) 50
5.2 Information Leakage 51
5.3 Confused Deputy 52
5.4 Privilege Escalation 54

5.4.1 Control-Flow Hijacking 56
5.4.2 Code Injection 58
5.4.3 Code Reuse 60

5.5 Summary . 61

6 Defense Strategies 62
6.1 Software Verification 62
6.2 Language-based Security 63
6.3 Testing . 64

6.3.1 Manual Testing 65
6.3.2 Sanitizers 69
6.3.3 Fuzzing 72
6.3.4 Symbolic Execution 81

6.4 Mitigations . 85
6.4.1 Data Execution Prevention (DEP)/WˆX 86
6.4.2 Address Space Layout Randomization

(ASLR) 87
6.4.3 Stack integrity 91

iii

Contents

6.4.4 Safe Exception Handling (SEH) 97
6.4.5 Fortify Source 100
6.4.6 Control-Flow Integrity 101
6.4.7 Code Pointer Integrity 106
6.4.8 Sandboxing and Software-based Fault

Isolation 106
6.5 Summary . 108

7 Case Studies 109
7.1 Web security 109

7.1.1 Protecting long running services 110
7.1.2 Browser security 112
7.1.3 Command injection 114
7.1.4 SQL injection 116
7.1.5 Cross Site Scripting (XSS) 117
7.1.6 Cross Site Request Forgery (XSRF) . . 118

7.2 Mobile security 119
7.2.1 Android system security 119
7.2.2 Android market 121
7.2.3 Permission model 122

8 Appendix 123
8.1 Shellcode . 123
8.2 ROP Chains 124

8.2.1 Going past ROP: Control-Flow Bending 124
8.2.2 Format String Vulnerabilities 125

9 Acknowledgements 126

References 127

iv

1 Introduction

Browsing through any daily news feed, it is likely that the
reader comes across several software security-related stories.
Software security is a broad field and stories may range from
malware infestations that abuse a gullible user to install ma-
licious software to widespread worm outbreaks that leverage
software vulnerabilities to automatically spread from one sys-
tem to another. Software security (or the lack thereof) is at
the basis of all these attacks.

But why is software security so difficult? The answer is com-
plicated. Both protection against and exploitation of security
vulnerabilities cross-cut through all layers of abstraction and
involve human factors, usability, performance, system abstrac-
tions, and economic concerns. While adversaries may target
the weakest link, defenders have to address all possible attack
vectors. An attack vector is simply an entry for an attacker
to carry out an attack, i.e., an opening in the defenses allowing
the attacker to gain unintended access. A single flaw is enough
for an attacker to compromise a system while the defender
must prohibit any feasible attack according to a given threat
model. As an example, an attacker requires a single exploitable
bug to compromise a system while the defender must prohibit
the exploitation of all flaws that are present in a system. If you

1

1 Introduction

compare this to logic formulas, it is much simpler to satisfy an
“it exists” condition than a “for all condition”.

Security and especially system and software security concerns
permeate all areas of our life. We interact with complex inter-
connected software systems on a regular basis. Bugs or defects
in these systems allow attackers unauthorized access to our data
or enable them to escalate their privileges such as by installing
malware. Security impacts everyone’s life and it is crucial
for a user to make safe decisions. To manage an information
system, people across several layers of abstraction have to work
together: managers, administrators, developers, and security
researchers. A manager will decide on how much money to
invest into a security solution or what security product to buy.
Administrators must carefully reason about who gets which
privileges. Developers must design and build secure systems to
protect the integrity, confidentiality, and availability of data
given a specific access policy. Security researchers identify flaws
and propose mitigations against weaknesses, vulnerabilities, or
systematic attack vectors.

Security is the application and enforcement of policies through
defense mechanisms over data and resources. Security policies
specify what we want to enforce. Defense mechanisms specify
how we enforce the policy (i.e., an implementation/instance
of a policy). For example, “Data Execution Prevention” is
a mechanism that enforces a Code Integrity policy by guar-
anteeing each page of physical memory in the address space
of a process is either writable or executable but never both.
Software Security is the area of security that focuses on (i)
testing, (ii) evaluating, (iii) improving, (iv) enforcing, and (v)

2

1 Introduction

proving security properties of software.

To form a common basis of understanding and to set the scene
for software security, this book first introduces and defines
basic security principles. These principles cover confidentiality,
integrity, and availability to define what needs to be protected,
compartmentalization to understand approaches of defenses,
threat models to reason about abstract attackers and behavior,
and differences between bugs and vulnerabilities.

During the discussion of the secure software life cycle, we will
evaluate the design phase with a clear definition of requirement
specification and functional design of software before going
into best implementation practices, continuous integration, and
software testing along with secure software updates. The focus
is explicitly not software engineering but security aspects of
these processes.

Memory and type safety are the core security policies that
enable semantic reasoning about software. Only ff memory
and type safety are guaranteed then we can reason about the
correctness of software according to its implementation. Any
violation of these policies results in exceptional behavior that
allows an attacker to compromise the internal state of the
application and execute a so-called weird machine. Weird
machines no longer follow the expected state transitions of an
application as defined in source code as the application state
is compromised. An execution trace of a weird machine always
entails some violation of a core security policy to break out of
the constraints of the application control-flow (or data-flow).
The CPU only executes the underlying instructions. When the
data is compromised, the high-level properties that the compiler

3

1 Introduction

or runtime system assumed will no longer hold and therefore
any checks that were removed due to these assumptions may
no longer hold.

The section on attack vectors discusses different types of at-
tacks. Starting with a confused deputy that abuses a given
API to trigger a compartment into leaking information or esca-
lating privileges to control-flow hijacking attacks that leverage
memory and type safety issues to redirect an application’s
control-flow to attacker-chosen locations. Code injection and
code reuse rewire the program to introduce attacker-controlled
code into the address space of a program.

The defense strategies section lists different approaches to pro-
tect applications against software security violations. As new
source code is written faster than it can be tested, some ex-
ploitable bugs will always remain despite the best development
and testing efforts. As a last line of defense, mitigations help a
system to ensure its integrity by sacrificing availability. Mitiga-
tions stop an unknown or unpatched flaw by detecting a policy
violation through additional instrumentation in the program.
During development, defense strategies focus on different ap-
proaches to verify software for functional correctness and to
test for specific software flaws with different testing strategies.
Sanitizers can help expose software flaws during testing by
terminating applications whenever a violation is detected.

A set of case studies rounds off the book by discussing browser
security, web security, and mobile security from a software and
system security perspective.

This book is intended for readers interested in understanding

4

1 Introduction

the status quo of software security, for developers that want
to design secure software, write safe code, and continuously
guarantee the security of an underlying system. While we
discuss several research topics and give references to deeper
research questions, this book is not intended to be research-
focused but a source of information to dive into the software
security area.

Disclaimer: this book is definitively neither perfect nor flawless.
If you find spelling errors, language issues, textual mistakes,
factual inconsistencies, or other flaws, please follow a respon-
sible disclosure strategy and let us know by dropping us an
email. We will happily update the text and make the book
better for everyone.

Enjoy the read and hack the planet!

5

2 Software and System
Security Principles

The goal of software security is to allow any intended use of soft-
ware but prevent any unintended use. Any unintended use may
cause harm as in unintended use of compute resources outside
of a defined allowed use. In this chapter, we discuss several sys-
tem principles that are essential when building secure software
systems. Confidentiality, Integrity, and Availability enable rea-
soning about different properties of a secure system. Isolation
enforces the separation between components such that interac-
tion is only possible along a well-defined interface that allows
reasoning about access primitives. Least privilege ensures that
each software component executes with the minimum amount
of privileges. During compartmentalization, a complex piece
of software is broken into smaller components. Isolation and
compartmentalization play together, a large complex system
is compartmentalized into small pieces that are then isolated
from each other. The threat model specifies the environment of
the software system, outlining the capabilities of an attacker.
Distinguishing between software bugs and vulnerabilities helps
us to decide about the risks of a given flaw.

6

2 Software and System Security Principles

2.1 Authentication

Authentication is the process of verifying if someone is who
they claim to be. Through authentication, a system learns who
you are based on what you know, have, or are. During authen-
tication, a user verifies that they have the correct credentials.
For example, to login on a system a user has to authenticate
with their username and password. The username may either
have to be entered or selected from a drop down list and the
password has to be typed.

Authenticating through username and password is the most
common form of verifying someones credential but alternate
forms are possible too. Common classes of authentication forms
are passwords (what you know), biometric (what you are), or
demonstration of property (what you have).

Passwords are the classic approach towards authentication.
During authentication, the user has to type their password or
PIN (personal identification number) to login. The password
is generally kept secret. Most systems provide usernames and
password as the default authentication method. Limitations
are the lack of replay resistance: an attacker that steals the
raw biometric data can replay that data to authenticate as
the user. This risk can be mitigated by a reasonable password
update policy where, after a break, the users may be urged to
update their passwords.

Another risk is that passwords can be brute-forced. During
such a brute force attack, the attacker tries every single possible
password combination. Over the years password policies have
become highly restrictive and on some systems users have to

7

2 Software and System Security Principles

create new passwords every few months, they are not allowed to
repeat passwords, and passwords must contain a set of unique
character types (e.g., upper case letters, lower case letters,
numbers, and special characters) to ensure sufficient entropy.
Current best practices are to allow users freedom in providing
sufficiently long passwords. It is easier to achieve good entropy
with longer passwords than having users forget their complex
short passwords.

Biometric logins may target fingerprints, Iris scans, or be-
havioral patterns (e.g., how you swipe across your screen).
Using biometric factors for authentication is convenient as
users cannot (generally) neither lose nor forget them. Their
key limitation is the lack of replay resistance. Different to pass-
words, biometrics cannot be changed, so a loss of data means
that this authentication form loses its utility. For example, if
someone’s fingerprints are known by the attacker, they can no
longer be used for authentication.

Property can be anything the user owns that can be presented
to the authentication system such as smartcards, smartphones,
or USB keys. These devices have some internal key generation
mechanism that can be verified. An advantage is that they are
easily replaceable. The key disadvantage is that they should
not be used by itself as, e.g., the smartphone may be stolen.

Instead of just using a single username and password pair,
many authentication systems nowadays rely on two or more
factors. For example, a user may have to log in with username,
password, and a code that is sent to their phone via text
message.

8

2 Software and System Security Principles

2.2 Access Rights

Access rights encode what entities a user has access to. For
example, a user may be allowed to execute certain programs but
not others. They may have access to their own files but not to
files owned by another user. The Unix philosophy introduced a
similar access right matrix consisting of user, group, and other
rights.

Each file has an associated user which may have read, write,
or execute rights. In addition to the user who is the primary
owner, there may be a group with corresponding read, write, or
execute rights, and all others that are not part of the group with
the same set of rights. A user may be member of an arbitrary
number of groups. The system administrator organizes group
membership and may create new users. Through privileged
services, users may update their password and other sensitive
data.

More information about access rights, access control (both
mandatory and discretionary) along with role based access
control can be found in many books on Usenix system design
or generally system security.

2.3 Confidentiality, Integrity, and Availability

Information security can be summarized through the three key
concepts: confidentiality, integrity, and availability. The three
concepts are often called the CIA triad. These concepts are
sometimes called security mechanisms, fundamental concepts,

9

2 Software and System Security Principles

properties, or security attributes. While the CIA triad is
somewhat dated and incomplete, it is an accepted basis when
evaluating the security of a system or program. The CIA
triad serves as a good basis for refinement and covers the core
principles. Secrecy as a generic property ensures that data is
kept hidden (secret) from an unintended receiver.

Confidentiality of a service limits access of information to priv-
ileged entities. In other words, confidentiality guarantees that
an attacker cannot recover protected data. The confidentiality
property requires authentication and access rights according
to a policy. Entities must be both named and identified and
an access policy determines the access rights for entities. Pri-
vacy and confidentiality are not equivalent. Confidentiality is
a component of privacy that prevents an entity from viewing
privileged information. For example, a software flaw that al-
lows unprivileged users access to privileged files is a violation
of the confidentiality property. Alternatively, encryption, when
implemented correctly, provides confidentiality.

Note that confidentiality ensures that someone else’s data is
being kept secret For example, the OS ensures confidentiality
of a process’ address space by hiding it from other processes.

Integrity of a service limits the modification of information to
privileged entities. In other words, integrity guarantees that an
attacker cannot modify protected data. Similar to confidential-
ity, the integrity property requires authentication and access
rights according to a policy. For example, a software flaw that
allows unauthenticated users to modify a privileged file is a
violation of the integrity policy. For example, a checksum that
is protected against adversarial changes can detect tampering

10

2 Software and System Security Principles

of data. Another aspect of integrity is replay protection. An
adversary could record a benign interaction and replay the same
interaction with the service. Integrity protection detects re-
played transactions. In software security, the integrity property
is often applied to data or code in a process.

For example, the OS ensures integrity of a process’ address
space by prohibiting other processes from writing to it.

Availability of a service guarantees that the service remains
accessible. In other words, availability prohibits an attacker
from hindering computation. The availability property guar-
antees that legitimate uses of the service remain possible. For
example, allowing an attacker to shut down the file server is a
violation of the availability policy.

For example, the OS ensures availability by scheduling each
process a “fair” amount of time, alternating between processes
that are ready to run.

The three concepts build on each other and heavily interact.
For example, confidentiality and integrity can be guaranteed by
sacrificing availability. A file server that is not running cannot
be compromised or leak information to an attacker. For the
CIA triad, all properties must be guaranteed to allow progress
in the system.

Several newer approaches extend these three basic concepts by
introducing orthogonal ideas. The two most common extensions
are accountability and non-repudiation, referring that a service
must be accountable and cannot redact a granted access right
or service. For example, a service that has given access to a file
to an authorized user cannot claim after the fact that access

11

2 Software and System Security Principles

was not granted. Non-repudiation is, at its core, a concept
of law. Non-repudiation allows both a service to prove to an
external party that it completed a request and the external
party to prove that the service completed the request.

Orthogonally, privacy ensures confidentiality properties for the
data of a person. Anonymity protects the identity of an entity
participating in a protocol.

Each property covers one separate aspect of information se-
curity. Policies provide concrete instantiations of any of the
policies while mechanisms further refine a policy into an actual
implementation. In practice, we will be working with policies
that provide certain guarantees, following the core properties
defined here. Policies themselves define the high level goals
and the concrete mechanisms then enforce a given policy.

2.4 Isolation

Isolation separates two components from each other and con-
fines their interactions to a well-defined API. There are many
different ways to enforce isolation between components, all of
them require some form of abstraction and a security monitor.
The security monitor runs at higher privileges than the isolated
components and ensures that they adhere to the isolation. Any
violation to the isolation is stopped by the security monitor
and, e.g., results in the termination of the violating compo-
nent. Examples of isolation mechanisms include the process
abstraction, containers, or SFI [33,34].

12

2 Software and System Security Principles

The process abstraction is the most well known form of iso-
lation: individual processes are separated by the operating
system from each other. Each process has its own virtual mem-
ory address space and can interact with other processes only
through the operating system which has the role of a security
monitor in this case. An efficient implementation of the process
abstraction requires support from the underlying hardware for
virtual memory and privileged execution. Virtual memory is
an abstraction of physical memory that allows each process to
use the full virtual address space. Virtual memory relies on a
hardware-backed mechanism that translates virtual addresses
to physical addresses and an operating system component that
manages physical memory allocation. The process runs purely
in the virtual address space and cannot interact with physical
memory. The code in the process executes in non-privileged
mode, often called user mode. This prohibits process code
from interacting with the memory manager or side-stepping
the operating system to interact with other processes. The
CPU acts as a security monitor that enforces this separation
and guarantees that privileged instructions trap into supervi-
sor mode. Together privileged execution and virtual memory
enable isolation. Note that similarly, a hypervisor isolates it-
self from the operating system by executing at an even higher
privileged mode and mapping guest physical memory to host
physical memory, often backed through a hardware mechanism
to provide reasonable performance.

Containers are a lightweight isolation mechanism that builds
on the process abstraction and introduces namespaces for ker-
nel data structures to allow isolation of groups of processes.
Normally, all processes on a system can interact with each

13

2 Software and System Security Principles

other through the operating system. The container isolation
mechanism separates groups of processes by virtualizing op-
erating system mechanisms such as process identifiers (pids),
networking, inter process communication, file system, and
namespaces.

Software-based Fault Isolation (SFI) [33,34] is a software tech-
nique to isolate different components in the same address space.
The security monitor relies on static verification of the exe-
cuted code and ensures that two components do not interact
with each other. Each memory read or write of a component
is restricted to the memory area of the component. To en-
force this property, each instruction that accesses memory is
instrumented to constrain the pointer to the memory area. To
prohibit the isolated code from modifying its own code, control-
flow transfers are carefully vetted and all indirect control-flow
transfers must target well-known locations. The standard way
to enforce SFI is to mask pointers before they are dereferenced
(e.g., anding them with a mask: and %reg, 0x00ffffff) and
by aligning control-flow targets and enforcing alignment.

Generally, lower levels of abstractions trust the isolation guar-
antees of higher levels. For example, a process trusts the
operating system that another process cannot suddenly read
its memory. This trust may be broken through side channels
which provide an indirect way to recover (partial) information
through an unintended channel. Threat models and side chan-
nels will be discussed in detail later. For now, it is safe to
assume that if a given abstraction provides isolation that this
isolation holds. For example, the process trusts the operating
system (and the underlying hardware which provides privilege

14

2 Software and System Security Principles

levels) that it is isolated from other processes.

2.5 Least Privilege

The principle of least privilege guarantees that a component
has the least amount of privileges needed to function. Different
components need privileges (or permissions) to function. For
example, an editor needs read permission to open a particular
file and write permissions to modify it. Least privilege requires
isolation to restrict access of the component to other parts of
the system. If a component follows least privilege then any
privilege that is further removed from the component removes
some functionality. Any functionality that is available can be
executed with the given privileges. This property constrains
an attacker to the privileges of the component. In other words,
each component should only be given the privilege it requires
to perform its duty and no more. Note that privileges have a
temporal component as well.

For example, a web server needs access to its configuration
file, the files that are served, and permission to open the corre-
sponding TCP/IP port. The required privileges are therefore
dependent on the configuration file which will specify, e.g., the
port, network interface, and root directory for web files. If
the web server is required to run on a privileged port (e.g.,
the default web ports 80 and 443) then the server must start
with the necessary privileges to open a port below 1024. After
opening the privileged port, the server can drop privileges and
restrict itself to only accessing the root web directory and its
subdirectories.

15

2 Software and System Security Principles

2.6 Compartmentalization

The idea behind compartmentalization is to break a complex
system into small components that follow a well-defined com-
munication protocol to request services from each other. Under
this model, faults can be constrained to a given compart-
ment. After compromising a single compartment, an attacker
is restricted to the protocol to request services from other
compartments. To compromise a remote target compartment,
the attacker must compromise all compartments on the path
from the initially compromised compartment to the target
compartment.

Compartmentalization allows abstraction of a service into
small components. Under compartmentalization, a system
can check permissions and protocol conformity across com-
partment boundaries. Note that this property builds on least
privilege and isolation. Both properties are most effective in
combination: many small components that are running and
interacting with least privilege.

A good example of compartmentalization is the Chromium web
browser. Web browsers consist of multiple different components
that interact with each other such as a network component,
a cache, a rendering engine that parses documents, and a
JavaScript compiler. Chromium first separates individual tabs
into different processes to restrict interaction between them.
Additionally, the rendering engine runs in a highly restricted
sandbox to limit any bugs in the parsing process to an unprivi-
leged process.

16

2 Software and System Security Principles

2.7 Threat Model

A threat model is used to explicitly list all threats that jeopar-
dize the security of a system. Threat modeling is the process of
enumerating and prioritizing all potential threats to a system.
The explicit motion of identifying all weaknesses of a system
allows individual threats to be ranked according to their impact
and probability. During the threat modeling process, the sys-
tem is evaluated from an attacker’s view point. Each possible
entry vector is evaluated, assessed, and ranked according to the
threat modeling system. Threat modeling evaluates questions
such as:

• What are the high value-assets in a system?
• Which components of a system are most vulnerable?
• What are the most relevant threats?

As systems are generally large and complex, the first step
usually consists of identifying individual components. The in-
teraction between components is best visualized by making any
data flow between components explicit, i.e., drawing the flow of
information and the type of information between components.
This first step results in a detailed model of all components
and their interactions with the environment.

Each component is then evaluated based on its exposure, ca-
pabilities, threats, and attack surface. The analyst iterates
through all components and identifies, on a per-component
basis, all possible inputs, defining valid actions and possible
threats. For each identified threat, the necessary preconditions
are mapped along with the associated risk and impact.

17

2 Software and System Security Principles

A threat model defines the environment of the system and
the capabilities of an attacker. The threat model specifies
the clear bounds of what an attacker can do to a system and
is a precondition to reason about attacks or defenses. Each
identified threat in the model can be handled through a defined
mitigation or by accepting the risk if the cost of the mitigation
outweighs the risk times impact.

Let us assume we construct the threat model for the Unix
“login” service, namely a password-based authentication ser-
vice. Our application serves three use-cases: (i) the system
can authenticate a user based on a username and password
through a trusted communication channel, (ii) regular users
can change their own password, and (iii) super users can create
new users and change any password. We identify the following
components: data storage, authentication service, password
changing service, and user administration service according to
the use-cases above.

The service must be privileged as arbitrary users are allowed
to use some aspects of the service depending on their privilege
level. Our service therefore must distinguish between different
types of users (administrators and regular users). To allow this
distinction, the service must be isolated from unauthenticated
access. User authentication services are therefore an integral
part of the operating system and privileged, i.e., run with
administrator capabilities.

The data storage component is the central database where
all user accounts and passwords are stored. The database
must be protected from unprivileged modification, therefore
only the administrator is allowed to change arbitrary entries

18

2 Software and System Security Principles

while individual users are only allowed to change their own
entry. The data storage component relies on the authentication
component to identify who is allowed to make modifications.
To protect against information leaks, passwords are encrypted
using a salt and one-way hash function. Comparing the hashed
input with the stored hash allows checking equivalence of a
password without having to store the plaintext (or encrypted
version) of the password.

The authentication service takes as input a username and
password pair and queries the storage component for the cor-
responding entry. The input (login request) must come from
the operating system that tries to authenticate a user. After
carefully checking if the username and password match, the
service returns the information to the operating system. To
protect against brute-force attacks, the authentication service
rate limits the number of allowed login attempts.

The password changing service allows authenticated users to
change their password, interfacing with the data storage compo-
nent. This component requires a successful prior authorization
and must ensure that users can only change their own password
but not passwords of other users. The administrator is also
allowed to add, modify, or delete arbitrary user accounts.

Such an authentication system faces threats from several direc-
tions, providing an exhaustive list would go beyond the scope
of this book. Instead, we provide an incomplete list of possible
threats:

• Implementation flaw in the authentication service allow-
ing either a user (authenticated or unauthenticated) to

19

2 Software and System Security Principles

authenticate as another user or privileged user without
supplying the correct password.

• Implementation flaw in privileged user management
which allows an unauthenticated or unprivileged user to
modify arbitrary data entries in the data storage.

• Information leakage of the password from the data stor-
age, allowing an offline password cracker to probe a large
amount of passwords1

• A brute force attack against the login service can probe
different passwords in the bounds of the rate limit.

• The underlying data storage can be compromised through
another privileged program overwriting the file, data
corruption, or external privileged modification.

2.8 Bug versus Vulnerability

A “bug” is a flaw in a computer program or system that results
in an unexpected outcome. A program or system executes
computation according to a specification. The term “bug”
comes from a moth that deterred computation of a Harvard
Mark II computer in 1947. Grace Hopper noted the system
crash in the operation log as “first actual case of bug being
found”, see 2.1, [10]. The bug led to an unexpected termination

1Originally, the /etc/passwd file stored all user names, ids, and hashed
passwords. This world readable file was used during authentication
and to check user ids. Attackers brute forced the hashed passwords
to escalate privileges. As a mitigation, Unix systems moved to a split
system where the hashed password is stored in /etc/shadow (along
with an id) and all other information remains in the publicly readable
/etc/passwd.

20

2 Software and System Security Principles

of the current computation. Since then the term bug was used
for any unexpected computation or failure that was outside of
the specification of a system or program.

Figure 2.1: “First actual case of bug being found”, note by
Grace Hopper, 1947, public domain.

As a side note, while the term bug was coined by Grace Hopper,
the notion that computer programs can go wrong goes back to
Ada Lovelace’s notes on Charles Babbage’s analytical machine
where she noted that “an analysing process must equally have
been performed in order to furnish the Analytical Engine with
the necessary operative data; and that herein may also lie a
possible source of error. Granted that the actual mechanism is
unerring in its processes, the cards may give it wrong orders.”

A software bug is therefore a flaw in a computer program that
causes it to misbehave in an unintended way while a hardware
bug is a flaw in a computer system. Software bugs are due to
human mistake in the source code, compiler, or runtime system.
Bugs result in crashes and unintended program state. Software
bugs are triggered through specific input (e.g., console input,

21

2 Software and System Security Principles

file input, network input, or environmental input).

If the bug can be controlled by an adversary to escalate privi-
leges, e.g., gaining code execution, changing the system state,
or leaking system information then it is called a vulnerability.

A vulnerability is a software weakness that allows an attacker
to exploit a software bug. A vulnerability requires three key
components (i) system is susceptible to flaw, (ii) adversary has
access to the flaw (e.g., through information flow), and (iii)
adversary has capability to exploit the flaw.

Vulnerabilities can be classified according to the flaw in the
source code (e.g., buffer overflow, use-after-free, time-of-check-
to-time-of-use flaw, format string bug, type confusion, or miss-
ing sanitization). Alternatively, bugs can be classified according
to the computational primitives they enable (e.g., arbitrary
read, arbitrary write, or code execution).

2.9 Summary

Software security ensures that software is used for its intended
purpose and prevents unintended use that may cause harm.
Security is evaluated based on three core principles: confiden-
tiality, integrity, and availability. These principles are evaluated
based on a threat model that formally defines all threats against
the system and the attacker’s capabilities. Isolation and least
privilege allow fine-grained compartmentalization that breaks a
large complex system into individual components where security
policies can be enforced at the boundary between components

22

2 Software and System Security Principles

based on a limited interface. Security relies on abstractions to
reduce complexity and to protect systems [17].

23

3 Secure Software Life Cycle

Secure software development is an ongoing process that starts
with the initial design and implementation of the software. The
secure software life cycle only finishes when software is retired
and no longer used anywhere. Until this happens, software
is continuously extended, updated, and adjusted to changing
requirements from the environment. This setting results in
the need for ongoing software testing and continuous software
updates and patches whenever new vulnerabilities or bugs are
discovered and fixed.

The environment such as operating system platforms (which
can be considered software as well, following the same life
cycle) co-evolve with the software running on the platform.
An example is the evolution of security features available on
the Ubuntu Linux distribution. Initially few to no mitigations
were present but with each new release of the distribution, new
hardening features are released, further increasing the resilience
of the environment against unknown or unpatched bugs in the
software. Ubuntu focuses on safe default configuration, secure
subsystems, mandatory access control, filesystem encryption,
trusted platform modules, userspace hardening, and kernel
hardening. Together, these settings and changes make it harder
for attackers to compromise a system.

24

https://wiki.ubuntu.com/Security/Features

3 Secure Software Life Cycle

Software engineering is different from secure software devel-
opment. Software engineering is concerned with developing
and maintaining software systems that behave reliably and
efficiently, are affordable to develop and maintain, and satisfy
all the requirements that customers have defined for them. It
is important because of the impact of large, expensive software
systems and the role of software in safety-critical applications.
It integrates significant mathematics, computer science, and
practices whose origins are in engineering.

Why do we need a secure software development life cycle?
Secure software development focuses not only on the functional
requirements but additionally defines security requirements
(e.g., access policies, privileges, or security guidelines) and
a testing/update regime on how to react if new flaws are
discovered. Note, this is not a book on software engineering. We
will not focus on waterfall, incremental, extreme, spiral, agile, or
continuous integration/continuous delivery. The discussion here
follows the traditional software engineering approach, leaving it
up to you to generalize to your favorite approach. We discuss
aspects of some modern software engineering concepts in a
short section towards the end of this chapter.

3.1 Software Design

The design phase of a software project is split into two sub
phases: coming up with a requirement specification and the
concrete design following that specification. The requirement
specification defines tangible functionality for the project, indi-
vidual features, data formats, as well as interactions with the

25

3 Secure Software Life Cycle

environment. From a security perspective, the software engi-
neering requirement specification is extended with a security
specification, an asset identification, an environmental assess-
ment, and use/abuse cases. The security specification involves
a threat model and risk assessment. The asset specification
defines what kind of data the software system operates on and
who the entities with access to the data are (e.g., including
privilege levels, administrator access, and backup procedures).
Aspects of the environment are included in this assessment as
they influence the threats, e.g., a public terminal is at higher
physical risk than a terminal operating in a secured facility.

Transitioning from the requirement specification phase to the
software design phase, security aspects must be included as
integral parts of the design. This transition involves additional
threat modeling based on the concrete design and architecture
of the software system. The design of the software then extends
the regular design documents with a concrete security design
that ties into the concrete threat model. The actors and their
abilities and permissions are clearly defined, both for benign
users and attackers. During this phase, the design is reviewed
from a functional but also from a security perspective to probe
different aspects and to iteratively improve the security guar-
antees. The final design document contains full specifications
of requirements, security constraints, and a formal design in
prose.

26

3 Secure Software Life Cycle

3.2 Software Implementation

The implementation of the software project follows mostly reg-
ular software engineering best practices in robust programming
[2]. Special care should be taken to ensure that source code
is always checked into a source code repository using version
control such as git or svn. Source version control systems
such as GitHub allow the organization of source code in a git
repository as well as corresponding documentation in a wiki.
Individual flaws can be categorized in a bug tracker and then
handled through branches and pull requests.

Each project should follow a strict coding standard that defines
what “flavor” of a programming language is used, e.g., how
code is indented and what features are available. For C++,
it is worthwhile to define how exceptions will be used, what
modern features are available, or how memory management
should be handled. Alongside the feature definition, the coding
standard should define how comments in the code are handled
and how the design document is updated whenever aspects
change. The Google C++ style guide or Java style guide
are great examples of such specification documents. They
define the naming structure in projects, the file structure, code
formatting, naming and class interfaces, program practices,
and documentation in an accessible document. Whenever a
programmer starts on a project they can read the style guide
and documentation to get a quick overview before starting on
their component.

Similarly, newly added or modified source code should be re-
viewed in a formal code review process. When committing code

27

https://www.github.com
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html

3 Secure Software Life Cycle

to a repository, before the new code is merged into the branch,
it must be checked by another person on the project to test
for code guidelines, security, and performance violations. The
code review process must be integrated into the development
process, working naturally alongside development. There are
a myriad of tools that allow source review such as GitHub,
Gerrit, and many others. For a new project it is important to
evaluate the features of the different systems and to choose the
one that best integrates into the development process.

3.3 Software Testing

Software testing is an integral component of software develop-
ment. Each new release, each new commit must be thoroughly
tested for functionality and security. Testing in software en-
gineering focuses primarily on functionality and regression.
Continuous integration testing, such as Jenkins or Travis, al-
low functional tests and performance tests based on individual
components, unit tests, or for the overall program. These tests
can run for each commit or at regular intervals to detect diver-
sions quickly. While measuring functional completeness and
detecting regression early is important, it somewhat neglects
security aspects.

Security testing is different from functional testing. Func-
tional testing measures if software meets certain performance
or functional criteria. Security as an abstract property is not
inherently testable. Crashing test cases indicate some bugs but
there is no guarantee that a bug will cause a crash. Automatic
security testing based on fuzz testing, symbolic execution, or

28

https://www.gerritcodereview.com/
https://jenkins.io/
https://travis-ci.org/

3 Secure Software Life Cycle

formal verification tests security aspects of the project, increas-
ing the probability of a crash during testing. See Section 6.3
for more details on testing. Additionally, a red team evaluates
the system from an adversary’s perspective and tries to find
exploitable flaws in the design or implementation.

3.4 Continuous Updates and Patches

Software needs a dedicated security response team to answer
to any threats and discovered vulnerabilities. They are the
primary contact for any flaw or vulnerability and will triage
the available resources to prioritize how to respond to issues.
Software evolves and, in response to changes in the environ-
ment, will continuously expand with new features, potentially
resulting in security issues.

An update and patching strategy defines how to react to said
flaws, how to develop patches, and how to distribute new ver-
sions of a software to the users. Developing a secure update
infrastructure is challenging. The update component must be
designed to frequently check for new updates while considering
the load on the update servers. Updates must be verified and
checked for correctness before they are installed. Existing soft-
ware market places such as the Microsoft Store, Google Android
Play, or the Apple Store provide integrated solutions to update
software components and allow developers to upload new soft-
ware into the store which then handles updates automatically.
Google Chrome leverages a partial hot update system that
quickly pushes binary updates to all Google Chrome instances
to protect them against attacks. Linux distributions such as

29

3 Secure Software Life Cycle

Debian, RedHat, or Ubuntu also leverage a market-style system
with an automatic software update mechanism that continu-
ously polls the server for new updates and informs the user
of new updates (e.g., through a pop up) or, if enabled, even
automatically installs the security updates.

3.5 Modern Software Engineering

Software engineering processes underwent several improvements
and many different management schemes exist. Under agile
software development, one of those modern extensions, both
requirements and solutions co-evolve as part of a collaborative
team. The teams self-organize and restructure themselves de-
pending on the changing requirements as part of the interaction
with the customer. Under an agile system, an early release is
constantly evaluated and further improved. The focus of agile
development is on functionality and evolutionary planning.

This core focus on functionality and the lack of a written
specification or documentation makes reasoning about security
challenging. Individual team leads must be aware of security
constraints and explicitly push those constraints despite them
never being encoded. Explicitly assigning a member of the
team a security role (i.e., a person that keeps track of security
constraints) allows agile teams to keep track of security con-
straints and to quickly react to security relevant design changes.
Every release under agile software development must be vetted
for security and this incremental vetting must consider security
implications as well (e.g., a feature may increase the threat
surface or enable new attack vectors).

30

3 Secure Software Life Cycle

3.6 Summary

Software lives and evolves. The software development life cycle
continues throughout the lifetime of software. Security must
be a first class citizen during this whole process. Initially, pro-
grammers must evaluate security aspects of the requirement
specification and develop a security-aware design with explicit
notion of threats and actors. During the implementation phase
programmers must follow strict coding guidelines and review
any modified code. Whenever the code or the requirements
change, the system must be tested for functionality, perfor-
mance, and security using automated testing and targeted
security probing. Last but not least, secure software develop-
ment is an ongoing process and involves continuous software
patching and updates – including the secure distribution of
said updates.

31

4 Memory and Type Safety

A set of core security principles covers the security of system
software. If these security principles hold then the software is
secure. Memory safety ensures that pointers always point to
a valid memory object, i.e., each memory access is in bounds
and to a live object. Type safety ensures that objects are
accessed with their corresponding types and casts observe
the type hierarchy according to the true runtime type of an
object. Under memory and type safety, all memory accesses
adhere to the memory and type semantics defined by the
source programming language. Bugs that cause the program
to violate memory or type safety can be used to change the
runtime state of the program. This modified runtime state
leads to an execution that would not be possible under a benign
execution of the program. For example, instead of encoding an
image into a different format, an image program may connect
to the internet and upload personal documents. Memory and
type safety restrict the program behavior to what is specified
in the source code. Bugs in the program logic may still allow
arbitrary actions but no action that does not conform to a
valid execution path in the program is possible.

For software written in high-level languages such as Java, core
principles such as memory safety and type safety guarantee the

32

4 Memory and Type Safety

absence of low-level flaws that violate the high-level abstrac-
tions of the programming language and therefore limit possible
attacks to bugs inherent to the program such as logic flaws.
To be precise, memory and type safety limit attackers to a
given specification and constraints of the implementation, not
constraints of an underlying abstract machine. Memory unsafe
languages like C/C++ do not enforce memory or type safety
and data accesses can occur through stale/illegal pointers and
an object may be reinterpreted under an illegal type.

The gap between the operational semantics of the programming
language and the instructions provided through the underlying
Instruction Set Architecture (ISA – e.g., the Intel x86 ISA
defines the available instructions and their encoding on an
x86 CPU) allow an attacker to step out of the restrictions
imposed by the programming language and access memory out
of context. If memory safety or type safety are violated, the
program must no longer follow the well-defined control-flow
graph and turns into a so-called weird machine [3]. You can
think of a weird machine as a snapshot of the program state
that was modified at a point in time. This modified memory
snapshot may reuse the existing code sequences (e.g., individual
instructions or short sequences of instructions) in unintended
ways and out of context. Repurposing existing code snippets
out of context turns a program into a weird machine. For
example, in the code below, the weird machine could transfer
control to notcalled by overwriting the function pointer ptr
with the address of notcalled and the variable flag with a
non-null value.

33

4 Memory and Type Safety

1 // this function is never called
2 void notcalled();
3
4 void addrtaken();
5
6 int flag = 0;
7 void (*ptr)() = &addrtaken;
8
9 void func() {

10 if (flag != 0) {
11 // under attack, this may call notcalled
12 ptr();
13 }
14 }

The need for memory or type safety checks depends on the
programming language. Some languages inherently enforce
memory and type safety (e.g., functional languages generally
do not expose pointers to the programmer) and therefore do not
require runtime checks. A low-level systems language such as
C requires explicit checks to guarantee memory and type safety
as the programmer is not required to add sufficient checks.

4.1 Pointer Capabilities

Pointers are unstructured addresses to memory and a way
to reference data or code. A pointer has an associated type
and a value, the address it points to. Under C/C++ pointer

34

4 Memory and Type Safety

arithmetic allows modification of a pointer through increments
and decrements. The validity of the pointer is not enforced
through the programming language but must be checked by
the programmer. For example, after a pointer increment the
programmer must ensure that the pointer still points into a
valid array. When dereferencing, the programmer is responsible
to guarantee that the pointed-to object is still valid.

Memory safety is a program property which guarantees that
memory objects can only be accessed with the corresponding
capabilities. At an abstract level, a pointer is a capability to
access a certain memory object or memory region [9,21]. A
pointer receives capabilities whenever it is assigned and is then
allowed to access the pointed-to memory object. The capa-
bilities of a memory object describe the size or area, validity,
and potentially the type of the underlying object. Capabili-
ties are assigned to a memory object when it is created. The
initial pointer returned from the memory allocator receives
these capabilities and can then pass them, through assignment,
to other pointers. Memory objects can be created explicitly
by calling the allocator, implicitly for global data by starting
the program, or implicitly for the creation of a stack frame
by calling a function. The capabilities are valid as long as
that memory object remains alive. Pointers that are created
from this initial pointer receive the same capability and may
only access the object inside the bounds of that object, and
only as long as that object has not been deallocated. Dealloca-
tion, either through an explicit call to the memory allocator or
through removal of the stack frame by returning to the caller,
destroys the memory object and invalidates all capabilities.

35

4 Memory and Type Safety

Pointer capabilities cover three areas: bounds, validity, and
type. The bounds of a memory object encode spatial infor-
mation of the memory object. Spatial memory safety ensures
that pointer dereferences are restricted to data inside of the
memory object. Memory objects are only valid as long as they
are allocated. Temporal safety ensures that a pointer can only
be dereferenced as long as the underlying object stays allocated.
Memory objects can only be accessed if the pointer has the cor-
rect type. Type safety ensures that the object’s type is correct
(according to the type system of the programming language)
and matches one of the compatible types according to type
inheritance. The C/C++ family of programming languages
allows invalid pointers to exist, i.e., a pointer may point to an
invalid memory region that is out of bounds or no longer valid.
A memory safety violation only occurs when such an invalid
pointer is dereferenced.

4.2 Memory Safety

Memory corruption, the absence of memory safety, is the root
cause of many high-profile attacks and the foundation of a
plethora of different attack vectors. Memory safety is a general
property that can apply to a program, a runtime environment,
or a programming language. A program is memory safe, if
all possible executions of that program are memory safe. A
runtime environment is memory safe, if all runnable programs
are memory safe. A programming language is memory safe,
if all expressible programs are memory safe. Memory safety
prohibits, e.g., buffer overflows, NULL pointer dereferences,

36

4 Memory and Type Safety

use after free, use of uninitialized memory, or double frees. So
while the C programming language is not memory safe, a C
program can be memory safe if all possible executions of the
C program enforce memory safety due to sufficient memory
safety checks by the programmer.

Memory safety can be enforced at different layers. Language-
based memory safety makes it impossible for the programmer
to violate memory safety by, e.g., checking each memory access
and type cast (Java, C#, or Python) or by enforcing a strict
static type system (Rust). Systems that retrofit memory safety
to C/C++ are commonly implemented at the compiler level due
to the availability of pointer and type information. Techniques
that retrofit memory safety for C/C++ must track each pointer
and its associated bounds for spatial memory safety, validity for
temporal memory safety, and associated type for type safety.

4.2.1 Spatial Memory Safety

Spatial memory safety is a property that ensures that all mem-
ory dereferences of an application are within the bounds of
their pointer’s valid objects. A pointer references a specific
address in an application’s address space. Memory objects are
allocated explicitly by calling into the memory allocator (e.g.,
through malloc) or implicitly by calling a function for local
variables. An object’s bounds are defined when the object is
allocated and a pointer to the object is returned. Any com-
puted pointer to that object inherits the bounds of the object.
Pointer arithmetic may change the pointer to outside the object.
Only pointers that point inside the associated object may be

37

4 Memory and Type Safety

dereferenced. Dereferencing a pointer that points outside of
the associated object results in a spatial memory safety error
and undefined behavior.

Spatial memory safety violations happen if a pointer is (i)
incremented past the bounds of the object, e.g., in a loop or
through pointer arithmetic and (ii) dereferenced:

1 char *c = (char*)malloc(24);
2 for (int i = 0; i < 26; ++i) {
3 // 1.) buffer overflow for i >= 24
4 c[i] = 'A' + i;
5 }
6 // 2.) violation through a direct write
7 c[26] = 'A';
8 c[-2] = 'Z';
9 // 3.) invalid pointers: OK if not dereferenced

10 char *d = c+26;
11 d -= 3;
12 *d = 'C';

This example shows a classic overflow where an array is sequen-
tially accessed past its allocated length. The iterator moves
past the end of the allocated object and as soon as the pointer
is dereferenced (to write), memory safety is violated, corrupting
an adjacent memory object. In the second case, memory safety
is violated through a direct overwrite where the index points
outside of the bounds of the object. The third case is fine
as the invalid pointer is never dereferenced. The C standard
allows pointers to become invalid as long as they are not used.

38

4 Memory and Type Safety

For example, a pointer can be incremented past the bounds
of the object. If it is decremented, it may become valid again.
Note that a pointer may only become valid again for spatial
safety. If the underlying object has been freed, the pointer
cannot become valid again.

4.2.2 Temporal Memory Safety

Temporal memory safety is a property that ensures that all
memory dereferences are valid at the time of the dereference,
i.e., the pointed-to object is the same as when the pointer was
created. When an object is freed (e.g., by calling free for heap
objects or by returning from a function for stack objects), the
underlying memory is no longer associated to the object and
the pointer is no longer valid. Dereferencing such an invalid
pointer results in a temporal memory safety error and undefined
behavior.

Various forms of temporal memory safety violations exist. After
allocation, memory of an object can be read before it is written,
returning data from the previously allocated object in that area.
A stale pointer can be used after the underlying object has been
returned to the memory allocator and even after that memory
has been reused for a different object. Temporal memory safety
violations happen if the underlying memory object was freed
as shown in the following example:

39

4 Memory and Type Safety

1 char *c = malloc(26);
2 char *d = c;
3 free(d);
4 // violation as c no longer points to a valid

object
5 c[23] = 'A';

4.2.3 A Definition of Memory Safety

Memory safety is violated if undefined memory is accessed,
either out of bounds or the underlying memory was returned
to the allocator. When evaluating memory safety, pointers
become capabilities, they allow access to a well-defined region of
allocated memory. A pointer becomes a tuple of address, lower
bound, upper bound, and validity. Pointer arithmetic updates
the tuple. Memory allocation updates validity. Dereference
checks capability. These capabilities are implicitly added and
enforced by the compiler. Capability-based memory safety
enforces type safety for two types: pointer-types and scalars.
Pointers (and their capabilities) are only created in a safe way.
Pointers can only be dereferenced if they point to their assigned,
still valid region.

4.2.4 Practical Memory Safety

In Java, memory safety is enforced by the programming lan-
guage and the runtime system. The programming language
replaces pointers with references and direct memory access is

40

4 Memory and Type Safety

not possible. There is no way to explicitly free and return
data to the runtime system, memory is implicitly reclaimed
through garbage collection. The runtime system enforces mem-
ory through additional checks (e.g., bounds checks) and lever-
ages a garbage collector to passively reclaim unused memory.
Note that Java also enforces type safety with explicit type
safety checks.

For Rust, a strict type system and ownership implements mem-
ory and type safety. References are bound to variables and
clear ownership protects against data races: single mutable
reference or zero or more immutable references. Memory is
reclaimed when variables go out of scope. Interestingly, many
of these guarantees can be enforced by the compiler resulting
in zero-cost abstractions.

Non-system functional languages such as Haskell or OCaml
are oblivious to memory violations as they do not require
the concept of references but pass data and control in other
forms. See Section 6.2 for a short discussion on language-based
security.

For C/C++ there are two approaches to achieve memory safety:
either removing unsafe features by creating a dialect or to
protect the use of unsafe features through instrumentation.

Dialects extend C/C++ with safe pointers and enforce strict
propagation rules. Cyclone [12] restricts the C programming
language to a safe subset by limiting pointer arithmetic, adding
NULL checks, using garbage collection for heap and region life-
times for the stack (one of the inspirations for Rust’s lifetimes),
tagged unions to restrict conversions, splitting pointers into the

41

4 Memory and Type Safety

three classes normal, never NULL, fat pointers, and replacing
setjmp (setjmp provides an archaic form of handling special
cases, allowing the developer to record a return point and then
jump to that point on demand) with exceptions and polymor-
phism. Cyclone enforces both spatial and temporal memory
safety. CCured [23] follows a similar idea and introduces a
pointer inference system to reduce the overhead of pointer
tagging and pointer tracking. Similarly, modern C++ vari-
ants such as C++1X support a memory safe subset that uses
references and strict ownership for memory objects to track
lifetimes. Whenever only the safe subsets are used, C++ can
be memory (and type) safe.

Protecting the use of unsafe features requires a runtime sys-
tem to keep track of all live objects and pointers, associating
bounds with each pointer and liveness with each memory ob-
ject. For each pointer dereference a bounds and liveness check
ensures that the memory access is valid. For pointer assign-
ments, the pointer inherits the bounds of the assigned reference.
SoftBound [21] is a compiler-based instrumentation to enforce
spatial memory safety for C/C++. The general idea is to keep
information about all pointers in disjoint metadata, indexed by
pointer location. The downside of the approach is an overhead
of 67% for SPEC CPU2006.

42

4 Memory and Type Safety

1 struct BankAccount {
2 char acctID[3]; int balance;
3 } b;
4 b.balance = 0;
5 char *id = &(b.acctID);
6 // Instrumentation: store bounds
7 lookup(&id)->bse = &(b.acctID);
8 lookup(&id)->bnd = &(b.acctID)+3;
9 // --

10 char *p = id; // local, remains in register
11 // Instrumentation: propagate information
12 char *p_bse = lookup(&id)->bse;
13 char *p_bnd = lookup(&id)->bnd;
14 // --
15 do {
16 char ch = readchar();
17 // Instrumentation: check bounds
18 check(p, p_bse, p_bnd);
19 // --
20 *p = ch;
21 p++;
22 } while (ch);

The code example shows the instrumentation for SoftBound.
Allocated memory is instrumented to return bounds (allocated
on a per-pointer basis). Pointer assignment propagates bounds.
Whenever the pointer is dereferenced for reading or writing,
the bounds are checked.

CETS [22], an extension for SoftBound, enforces temporal

43

4 Memory and Type Safety

memory safety by storing validity for each object and pointer.
CETS leverages memory object versioning. The code instru-
mentation allocates a unique version to each allocated memory
area and stores this version in the pointer metadata as well.
Each deallocation is instrumented to destroy the version in the
object’s memory area, causing the pointer and object version
to become out of sync. Upon dereference, CETS checks if the
pointer version is equal to the version of the memory object.
There are two failure conditions: either the area was deallo-
cated and the version is smaller (0) or the area was reallocated
to a new object and the version is bigger. Both error conditions
result in an exception and terminate the program.

The instrumentation and metadata can be carried out with
different trade-offs regarding performance, memory overhead,
and hardware extensions [5,15,20].

4.3 Type Safety

Well-typed programs cannot “go wrong”.
(Robin Milner)

Type-safe code accesses only well-typed objects it is authorized
to access. The literature groups type safety into different classes:
strongly typed or weakly typed (with implicit type conversion).
The type system can orthogonally be either static or dynamic.
Despite a lot of research in type safety, C/C++ which are not
type safe remain popular languages. Note that full type safety
does not imply memory safety. The two properties are distinct.
A C++ program can be type safe but not memory safe, e.g.,

44

4 Memory and Type Safety

an array index may point outside of the bounds of an array
in a perfectly type safe program, resulting in a memory safety
violation. Similarly, memory safety does not imply type safety
as a char * array may be wrongly interpreted as an object of
a specific type.

Type safety is a programming language concept that assigns
each allocated memory object an associated type. Typed mem-
ory objects may only be used at program locations that expect
the corresponding type. Casting operations allow an object to
be interpreted as having a different type. Casting is allowed
along the inheritance chain. Upward casts (upcasts) move the
type closer to the root object, the type becomes more generic,
while downward casts (downcasts) specialize the object to a
subtype. For C, the type lattice is fully connected, any pointer
type can be cast to any other pointer types with the validity
of the cast being the responsibility of the programmer.

In C++ there are several casting operations. The most
common ones are static and dynamic casts. A static cast
static_cast<ToClass>(Object) results in a compile time
check where the compiler guarantees that the type of Object
is somehow related to ToClass, without executing any runtime
check. A dynamic_cast<ToClass>(Object) results in a
runtime check but requires Runtime Type Information (RTTI)
and is only possible for polymorphic classes (i.e., they must
have a vtable pointer in the object itself that uniquely identifies
the class). Due to the runtime check, this type of cast results
in performance overhead.

45

4 Memory and Type Safety

1 class Base { int base; };
2
3 class Exec: public Base {
4 public:
5 virtual void exec(const char *prg) {
6 system(prg);
7 }
8 };
9

10 class Greeter: public Base {
11 public:
12 int loc;
13 virtual void sayHi(const char *str) {
14 std::cout << str << std::endl;
15 }
16 };
17
18 int main() {
19 Base *b1 = new Greeter();
20 Base *b2 = new Exec();
21 Greeter *g;
22
23 g = static_cast<Greeter*>(b1);
24 g->sayHi("Greeter says hi!");
25
26 // Type confusion
27 g = static_cast<Greeter*>(b2);
28
29 // execute Exec::exec instead of Greeter::sayHi
30 // Low-level implementation: g[0][0](str);
31 g->sayHi("/usr/bin/xcalc");
32 g->loc = 12; // memory safety violation
33
34 delete b1;
35 delete b2;
36 }

46

4 Memory and Type Safety

In the code example above, an object of type Greeter is allo-
cated and then upcast to a Base type. Later, the Base type
is downcast into Exec. As the runtime type of the object is
Greeter, this downcast is illegal and results in type confusion
– a violation of type safety.

In low-level languages like C or C++, type safety is not explicit
and a memory object can be reinterpreted in arbitrary ways.
C++ provides a complex set of type cast operations. Static
casts are only checked at compile time to check if the two
types are compatible. Dynamic casts execute a slow runtime
check, which is only possible for polymorphic classes with
virtual functions as otherwise, no vtable pointer – to identify
the object’s type – is available in the memory object layout.
Reinterpret casts allow reclassification of a memory object
under a different type. Static casts have the advantage that
they do not incur any runtime overhead but are purely checked
at compile time. Static casts lack any runtime guarantees and
objects of the wrong type may be used at runtime. For example,
the figure below shows a type violation where an object of the
base type can be used as a subtype after an illegal downcast.
Reinterpretation of casts allows the programmer to explicitly
break the underlying type assumptions and reassign a different
type to the pointer or underlying memory object. Due to the
low-level nature of C++, a programmer may write to the raw
memory object and change the underlying object directly.

Ideally, a program can statically be proven type safe. Unfortu-
nately, this is not possible for C/C++ due to the generalicity
of the underlying type system and the opportunity to handle
raw memory. Defenses therefore have to resort to runtime

47

4 Memory and Type Safety

Base

Greeter Exec

Greeter *g = new Greeter();
Base *b = static_cast<Base*>(g);
Exec *e = static_cast<Exec*>(b);

Example of a type confusion vulnerability due to an illegal
downcast.

checks. By making all casts in the program explicit and check-
ing them for correctness at runtime, we ensure that the runtime
type conforms to the statically assumed type at compile time
[8,11,18,28]. Such a solution must keep metadata for all allo-
cated memory objects, similarly to memory safety. Instead of
bounds, a type safety mechanism records the true type of each
allocated object. All cast types in C++ are then replaced with
a runtime check.

4.4 Summary

Memory and type safety are the root cause of security vulnera-
bilities. Memory safety defines spatial and temporal capabilities
for pointers. Spatial memory safety guarantees that pointers
can only access objects in the corresponding bounds. Temporal
memory safety checks for liveness of the underlying object.

48

4 Memory and Type Safety

When both spatial and temporal memory safety are enforced
then a pointer is locked to a given memory object and can only
dereference the area inside the object as long as that object is
valid. Type-safe code accesses only the memory locations it is
authorized to access. Type safety ensures that each object is
only used with its correct type.

49

5 Attack Vectors

Understanding the intention of an attack helps with assessing
the attack surface of a program. Not all attack vectors are
feasible for all attacks and not all bugs allow instantiating
all attack vectors. Attacker goals can be grouped into three
broad classes: Denial of service (DoS); leaking information;
and escalation of privileges, with confused deputies a special
form of privilege escalation.

5.1 Denial of Service (DoS)

Denial of Service violates the availability property. DoS pro-
hibits the legitimate use of a service by either causing abnor-
mal service termination (e.g., through a segmentation fault) or
overwhelming the service with a large number of duplicate/un-
necessary requests so that legitimate requests can no longer
be served. DoS also applies to outside the server setting, e.g.,
by corrupting a checksum of an image file it will no longer be
displayed by an image viewer. This is the easiest attack to
achieve as a server simply needs to be overwhelmed with bad
requests to drown any legit requests.

50

5 Attack Vectors

5.2 Information Leakage

Information leakage violates the confidentiality property. Infor-
mation leaks are abnormal or unintended transfers of sensitive
information to the attacker. An information leak abuses an
illegal, implicit, or unintended transfer of information to pass
sensitive data to the attacker who should not have access to
that data. An attacker can abuse an intended transfer of
information and trick the program into sending unintended
information (e.g., instead of sending a benign file as intended
the server returns a privileged file).

Information leaks may be related to memory safety issues or
logic errors. If the information leakage is due to a logic error,
then the application can be tricked, following a benign path
of execution, to leak the information to the attacker. Some
information leaks are due to debug statements in the code, e.g.,
stack trace information that is returned to the user in the case of
an exception or crash in a web application or publicly readable
log files that record errors and crashes of applications together
with auxiliary debug information such as crash addresses.

Memory or type safety violations may be used to leak informa-
tion. For such leaks, the software flaw corrupts program state
to replace or augment benign information with sensitive infor-
mation. Leaking runtime information of an address space such
as pointers, library, stack, or code locations enables bypassing
probabilistic defenses such as Stack Canaries or Address Space
Layout Randomization as these locations or values are only
randomized on a per-process basis and are constant throughout
the lifetime of a process.

51

5 Attack Vectors

5.3 Confused Deputy

A confused deputy is a kind of privilege escalation that tricks
a component to execute an unprivileged action with higher
privileges. A privileged component is supposed to only use its
privileges for a benign action. By carefully setting up its input,
an unprivileged attacker can make a privileged component (i.e.,
the confused deputy) unintentionally execute a privileged action
(from the viewpoint of the developer). The confused deputy
acts on behalf of the malicious component. The malicious
component tricks the confused deputy into abusing its privileges
on behalf of the attacker. The name “confused deputy” goes
back to Barney Fife, an easily confused deputy who could be
tricked into abusing his power in “The Andy Griffith Show” in
the 1950s, see Figure 5.1.

The classic example of a confused deputy is a compiler that
overwrites its billing file. On old mainframe computing systems
customers had to pay for each run of the compiler due to the
resources that were used on the mainframe for the compilation
process. The compiler had access to a log file that recorded
which user invoked the compiler. By specifying the log file
as output file, the compiler could be tricked to overwrite the
billing file with the executable program. The compiler required
access to the log file (to record users) and the user invoking the
compiler had the right to specify an output file to specify the
new executable. As this compiler did not check if the output
file was a special file, it acted as confused deputy. Another,
more modern example is Cross-Site Scripting (XSS) which
tricks a webpage to execute malicious JavaScript code in the
user’s browser.

52

5 Attack Vectors

Figure 5.1: Barney Fife, the confused deputy, locks up half the
town due to a chain of misunderstandings. From
“The Andy Griffith Show”, 1961, public domain.

53

5 Attack Vectors

5.4 Privilege Escalation

Privilege escalation is an unintended increase of privileges (from
the viewpoint of the developer). An example of privilege
escalation is gaining arbitrary code execution. Starting from
access to the service and constrained to the functions provided
by the service, the attacker escalates to arbitrary code execution
where she has full access to all files, privileges, and system calls
of that service. Another example of privilege escalation is a
user without privileges that can modify files owned exclusively
by the administrator, e.g., through a misconfiguration of the
web interface.

While there are several forms of privilege escalation, we will
focus on privilege escalation based on memory or type safety
violations. Every such attack starts with a memory or type
safety violation. Spatial memory safety is violated if an object
is accessed out of bounds. Temporal memory safety is violated
if an object is no longer valid. Type safety is violated if an
object is cast and used as a different (incompatible) type. Any
of these bug types allow a reconfiguration of program state that
can trigger a privilege escalation when the legitimate code of
the application acts on the corrupted state. In software security,
these violations are used to hijack control-flow. The control
flow is redirected to injected code or existing code that is reused
in unintended ways. Alternatively, they can be used to corrupt
data. Figure 5.2 shows the different paths an attack can take
with the different mitigations that need to be circumvented
along the attack flow for code corruption and control-flow
hijacking attacks.

54

5 Attack Vectors

Memory safety

Integrity

Confidentiality

Flow Integrity

Bad things

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

Figure 5.2: The attack flow of memory corruption-based at-
tacks. ‘C’ conforms to Code, ‘D’ to Data; ‘&’ marks
an address-of operator; ‘*’ marks a dereference op-
erator. The attack path needs to bypass defenses
at different levels of abstraction: integrity, confi-
dentiality, and flow integrity.

55

5 Attack Vectors

5.4.1 Control-Flow Hijacking

A successful Control-Flow Hijacking attack redirects the appli-
cation’s control-flow to an adversary-controlled location. This
attack primitive gives the adversary control over the execution
of the program and instruction pointer. Control-flow hijack-
ing is generally achieved by overwriting a code pointer either
directly or indirectly. An indirect control-flow transfer such
as an indirect call (call rax for x86), indirect jump (jmp rax
for x86), or indirect branch (mov pc, r2 for ARM) updates
the instruction pointer with a value from a register, continuing
control-flow from this new location. The value is often read
from writable memory and can therefore be controlled by the
attacker.

Given code integrity (i.e., benign code cannot be modified), the
attacker cannot modify relative control-flow transfers. A direct
control-flow transfer is a call or jump to a hard coded location
where the target is either in read-only memory or encoded as
part of the instruction. For example on x86, function calls are
encoded as control-flow transfers relative to the instruction
pointers with an offset that is part of the instruction itself.

Indirect calls are used to provide flexibility as part of the
programming language, e.g., a call through a function pointer
in C or a virtual dispatch for C++. Additionally, the return
instruction pointer on the stack points back to the location in
the calling function. At the programming language level, the
target is well defined and given type safety and memory safety,
the control-flow of the program is well contained. But given
any memory safety or type safety corruption, the value of the

56

5 Attack Vectors

target in memory may be overwritten by the attacker.

1 int benign();
2
3 void vuln(char *attacker) {
4 int (*func)();
5 char buf[16];
6
7 // Function pointer is set to benign function
8 func = &benign;
9

10 // Buffer overflow may compromise memory safety
11 strcpy(buf, attacker);
12
13 // Attacker may hijack control-flow here.
14 func();
15 }

Listing 5.1: Buffer overflow into function pointer.

In the code example above, an attacker may supply a buffer
that is larger than the local stack buffer. When copying data
into the buffer buf, a stack-based buffer overflow may overwrite
the function pointer on the stack. This memory safety violation
allows the adversary to compromise the stored code pointer
func. When func is later dereferenced, the attacker-controlled
value is used instead of the original value.

To orchestrate a control-flow hijack attack, an adversary must
know the location of the code pointer that will be overwritten
and the location of the target address, i.e., where to redirect

57

5 Attack Vectors

control-flow to. Additionally, there must be a path from the
vulnerability to the location where the attacker-controlled code
pointer is dereferenced.

5.4.2 Code Injection

Code injection assumes that the attacker can write to a location
in the process that is executable. The attacker can either
overwrite or modify existing code in the process, rewriting
instructions either partially or completely. Corrupting existing
code may allow an attacker to gain code execution without
hijacking control flow as a benign control-flow transfer may
direct execution to attacker-controlled code. Alternatively, the
attacker can hijack control-flow to the injected code.

Modern architectures support the separation of code and data,
therefore this attack vector is no longer as prevalent as it
was. A modern variant of this attack vector targets Just-In-
Time compilers that generate new code dynamically. In such
environments some pages may be writable and executable at
the same time.

Code injection requires the existence of a writable and exe-
cutable memory area, the knowledge of the location of this
memory area, and, if the location is not reached through a
benign control-flow transfer, a control-flow hijack primitive.
The injected code conforms to shellcode that, depending on
the vulnerability, must follow certain guidelines. See Section
8.1 for a discussion of shellcode and its construction.

58

5 Attack Vectors

Given the vulnerable code in the example below, an attacker
can provide input to overflow the cookie buffer, continuously
overwriting information that is higher up on the stack as the
strcpy function does not check the bounds of cookie. As-
sume that this program is compiled without code execution
prevention and the program runs without ASLR.

There are several methods to exploit this vulnerability. Control-
flow hijacking is achieved by overwriting the return instruction
pointer on the stack. Code may be injected in three loca-
tions: (i) the buffer itself, (ii) higher up on the stack frame
“above” the return instruction pointer, or (iii) in an environ-
ment variable (the example conveniently reports the location
of the EGG environment variable. We therefore prepare the
shellcode in the environment variable EGG and overwrite the
return instruction pointer to point to the beginning of EGG.
Upon return, instead of returning control flow to the call-
ing function, the shellcode in EGG will be executed, giving
the attacker control. The full input to exploit the vulner-
ability is: [AA],
[the address of the EGG environment variable], and a [0x0]
byte. The first 32 bytes fill the buffer with As, the next 4 bytes
overwrite some padding inserted by the compiler, the next 4
bytes overwrite the frame pointer, and the remaining 4 bytes
overwrite the return instruction pointer. The exact layout of
the stack frame depends on the compiler and may be inferred
by analyzing the assembly code.

59

5 Attack Vectors

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int main(int argc, char* argv[]) {
6 char cookie[32];
7 printf("Give me a cookie (%p, %p)\n",
8 cookie, getenv("EGG"));
9 strcpy(cookie, argv[1]);

10 printf("Thanks for the %s\n", cookie);
11 return 0;
12 }

Listing 5.2: Stack based code injection.

5.4.3 Code Reuse

Instead of injecting code, reuse existing code of the program.
The main idea is to stitch together existing code snippets to
execute new arbitrary behavior. This is also called Return-
Oriented Programming (ROP), Jump-Oriented Programming
(JOP), Call-Oriented Programming (COP), Counterfeit-Object
Oriented Programming (COOP) for different aspects of code
reuse.

Any executable code of the application may be used by the
attacker in an alternate way under the constraints of any active
mitigation mechanism. Through indirect control-flow transfers,
adversaries can chain together small code sequences (called
gadgets) that end in another indirect control-flow transfer.

60

5 Attack Vectors

A successful code reuse attack requires (i) knowledge of a
writable memory area that contains invocation frames (gadget
address and state such as register values), (ii) knowledge of
executable code snippets (gadgets), (iii) control-flow must be
hijacked/redirected to prepared invocation frames, and (iv)
construction of ROP payload. See Section 8.2 for a discussion
on the construction of ROP payloads.

5.5 Summary

This chapter presented a broad overview of different attack
vectors. We discussed attack vectors from a simple Denial of
Service (DoS) that prohibits a legit user from using a service
over information leakage that allows an adversary to extract
secrets to privilege escalation and confused deputies which both
give the adversary additional computation privileges that they
would otherwise not have.

The goals of adversaries vary and weaknesses in software may
be used to achieve different goals. The craft of an attacker is
to leverage an exposed bug to trick the underlying program
into doing something on the attacker’s behalf.

61

6 Defense Strategies

Defending against software vulnerabilities is possible along
four dimensions: (i) formally proving software correct which
guarantees that the code is bug free (according to a given
specification), (ii) rewriting the software in a safe program-
ming language, (iii) software testing which discovers software
flaws before they can do any harm, and (iv) mitigations which
protect a system in the presence of unpatched or unknown
vulnerabilities.

6.1 Software Verification

Software verification proves the correctness of code according
to a given specification. The security constraints (e.g., no
memory or type safety violation) are encoded and given as
configuration to the verification process. Different forms of
formal verification exist such as bounded model checking or
abstract interpretation. All of them prove that a given piece of
code conforms to the formal specification and guarantee that
no violations of the security policy are possible.

Some well-known examples of formally verified code are seL4
[14], a formally verified operating system kernel or CompCert

62

6 Defense Strategies

[19], a formally verified compiler. For seL4, operating system
concepts are encoded as high-level policies on top of a proof
system. After proving the correctness of the high level operating
system policy, the equivalence between the high-level policy
and a low-level implementation is proven in a second step. For
CompCert, individual steps and transformations of the compiler
are provably correct. This guarantees that verified compiler
transformations are always correct and will not introduce any
bugs as part of the compilation process.

The main challenge of software verification is scalability. Auto-
matic software verification scales to 100s of lines of code with
an exponential increase in verification cost with linear increase
of code. As an example, human guided verification of the seL4
kernel verification cost several person years.

6.2 Language-based Security

Language-based security is a rather new area of research that
focuses on enforcing security properties as part of the pro-
gramming language, protecting the programmer from making
mistakes. Programming languages have always enforced some
form of structure, thereby protecting against certain types of
bugs. Language-based security makes reasoning about secu-
rity aspects explicit and allows languages to be designed in a
security specific way.

Early examples are functional programming languages that
inherently protect against memory safety violations and data

63

6 Defense Strategies

races. Functional languages track references to data and pro-
hibit direct pointer manipulation. Orthogonally, variables may
only be written once during assignment, protecting against
data races as data cannot be modified concurrently. Java is a
popular programming language that enforces both type safety
and memory safety as part of the programming language and
its runtime system.

A modern example of a secure imperative programming lan-
guage is Rust. Rust enforces memory safety and data race
freedom through ownership tracking and a strict type system.
The clear ownership in Rust prohibits concurrent modification
and allows the compiler to check memory ownership during
compilation. The majority of the type checks are executed
statically as part of the compilation (and the compiler can give
detailed warnings about possible issues) with minimal runtime
checks. Rust gives strong memory safety, type safety, and data
race freedom guarantees at negligible performance overhead
at the cost of a steep learning curve as the programmer must
make all ownership assumptions explicit when writing code.

6.3 Testing

Software testing allows developers to identify bugs before they
can do any harm. This process is orthogonal to software devel-
opment and, if done correctly, is integrated into the develop-
ment process to allow for continuous software testing. Testing
is the process of executing a program to find flaws. An error is
a deviation between observed behavior and specified behavior,
i.e., a violation of the underlying specification of functional

64

6 Defense Strategies

requirements (features a, b, c) or operational requirements
(performance, usability). Both functional and operational re-
quirements are testable. Security requirements are not directly
testable as, e.g., the absence of bugs is hard to prove.

For applications written in C/C++ we can indirectly test that
memory safety and type safety guarantees hold by observing the
effects of testing. Instead of checking the correct computation
of the result we measure if the program crashes or is terminated
through a security exception.

Testing can only show the presence of bugs, never
their absence.
(Edsger W. Dijkstra)

6.3.1 Manual Testing

Test-driven development flips the process between testing and
implementation. Instead of writing test cases for a given imple-
mentation, the test cases are written as a first implementation
step. This approach allows the programmer to encode details
that are specified in the design. The test cases are witnesses
for required features. Initially all test cases fail and slowly, as
the implementation proceeds, the test cases start to pass as
more and more features are implemented. Testing should be
integrated with a continuous integration system that verifies
all test cases (and coding style) whenever new code is checked
into the project’s source repository.

Manual testing involves the development of positive and neg-
ative test cases and embedding assertions in the production

65

6 Defense Strategies

code. Assertions help test negative test cases and find bugs
before they corrupt any state which would make them hard to
triage.

Unit tests are small test cases that focus on an individual unit
or feature of the program. The Google testing framework
[7] simplifies the implementation of such tests. To provide
necessary application state, unit testing frameworks enable a
wide range of mock operations.

Integration tests allow testing of interactions between individual
modules. For example, an integration test could measure the
interaction between a browser’s DOM and the printer daemon
that creates a visual representation of the DOM to send it off
to a printer.

System testing tests the full application. For example, a browser
displaying a web page and a user interacting with that page to
accomplish a certain task such as filling out a form and sending
it off.

Beta testing leverages a small set of users that thoroughly
test the software to find remaining flaws. Any identified bug
is triaged and fixed. It is good testing practice to create a
test case for each identified flaw to protect against regression.
Regression happens if a code change suddenly fails existing
test cases. Keeping test cases for each fixed bug allows early
detection if a bug is introduced again and may catch similar
bugs as well.

An interesting question is what metric is used to evaluate
the quality of a test suite. A deterministic metric allows an
absolute evaluation of the quality of the suite, i.e., how well

66

6 Defense Strategies

a test suite maps to a program. Coverage is a natural metric
that suits the aforementioned criteria. Coverage is used as a
metric to evaluate the quality of a test suite. The intuition
is that a software flaw is only detected if the flawed code is
executed. The effectiveness of the test suite therefore depends
on the resulting coverage. Different coverage metrics exist with
varying tradeoffs. We consider statement coverage, branch
coverage, path coverage, and data-flow coverage.

Statement coverage measures, for each statement, if it has
been executed. Coverage tracking can be done using a simple
array and instrumentation that marks the executed bit for
each statement when executed (or basic block without loss of
generality). A disadvantage of statement coverage is that not
all edges are tracked, e.g., the backward edge of a loop may
never be executed in the following example:

1 int func(int elem, int *inp, int len) {
2 int ret = -1;
3 for (int i = 0; i <= len; ++i) {
4 if (inp[i] == elem) { ret = i; break; }
5 }
6 return ret;
7 }
Listing 6.1: Example where statement coverage misses a bug.

The test input elem = 2, inp = [1, 2], len = 2 achieves
full statement coverage but the execution never executed the
last iteration of the loop which will result in a buffer overflow.

67

6 Defense Strategies

The branch edge from the check in the loop to the end of the
loop is never followed.

Branch coverage measures, for each branch, if it has been
followed. Again, coverage tracking can be done using a sim-
ple array and instrumentation that marks executed branches.
Branch coverage marks both the execution of the basic block
and the branch to a given basic block and is therefore a super
set of simple statement coverage. Full branch coverage implies
full statement coverage. Unfortunately, branch coverage may
not be precise enough:

1 int arr[5] = { 0, 1, 2, 3, 4 };
2 int func(int a, int b) {
3 int idx = 4;
4 if (a < 5) idx -= 4; else idx -= 1;
5 if (b < 5) idx -= 1; else idx += 1;
6 return arr[idx];
7 }

Listing 6.2: Limitation of branch coverage.

The test inputs a = 5, b = 1 and a = 1, b = 5 achieve full
branch coverage (and full statement coverage), yet, not all
possible paths through the program will be executed. The
input a = 1, b = 1 results in a bug when both statements
are true at the same time. Full path coverage evaluates all
possible paths. Evaluating all possible paths quickly becomes
expensive as each branch doubles the number of evaluated
paths or even impossible for loops where the bounds are not
known. This exponential increase in the amount of paths is

68

6 Defense Strategies

called path explosion. Loop coverage (execute each loop 0, 1, n
times), combined with branch coverage probabilistically covers
state space. Implementing path coverage requires runtime
tracing of the paths as, programs with more than roughly 40
branches cannot be mapped into a flat array and enumerating
all paths becomes impossible given current (and future) memory
constraints.

Data-flow coverage extends beyond path coverage and tracks
full data flow through the program at even higher overhead. In
addition to path constraints (a boolean for each path decision),
the values of all program values have to be tracked as well.
This is the most precise way to track coverage but involves
high overheads.

Therefore, in practice, branch coverage is the most efficient
tool and several mechanisms exist that allow branch coverage
tracking for software. Two examples are gcov and Sanitizer-
Coverage. Branch coverage keeps track of edges in the CFG,
marking each executed edge with the advantage that only a
bit of information is required for each edge (and no dynamic
information that depends on the number of executed paths).

6.3.2 Sanitizers

Test cases detect bugs through miscompared results, asser-
tion failures, segmentation faults, division by zero, uncaught
exceptions, or mitigations that trigger process termination.
Sanitizers are compilation frameworks that instrument a pro-
gram with additional checks. When executed with the test

69

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

6 Defense Strategies

cases, unit tests, or under fuzz testing, the sanitizers can de-
tect violations at the source of the flaw and not just when
the process traps. Sanitizers detect low level violations of,
e.g., memory safety or type safety, not high-level functional
properties.

Recently several new sanitizers were added to the LLVM com-
piler framework to target different kinds of vulnerabilities:
AddressSanitizer, LeakSanitizer, MemorySanitizer, Undefined-
BehaviorSanitizer, ThreadSanitizer, and HexType.

AddressSanitizer (ASan) [30] detects memory errors. It places
red zones around objects and checks those objects on trigger
events. The typical slowdown introduced by ASan is 2x. The
tool can detect the following types of bugs:

• Out-of-bounds accesses to heap, stack and globals
• Use-after-free
• Use-after-return (configurable)
• Use-after-scope (configurable)
• Double-free, invalid free
• Memory leaks (experimental)

Note that the ASan memory safety guarantees are probabilistic.
ASan leverages so called red zones around objects which are
marked with a special value. Checks ensure that the special
value remains intact. Similarly for use-after-free, instrumen-
tation ensures that the values remain correct. This obviously
does not protect against memory areas that are reallocated
to different objects. ASan is therefore not a mitigation but a
sanitizer that helps to probabilistically detect flaws.

70

6 Defense Strategies

LeakSanitizer detects run-time memory leaks. It can be com-
bined with AddressSanitizer to get both memory error and leak
detection, or used in a stand-alone mode. LSan adds almost
no performance overhead until process termination, when the
extra leak detection phase runs.

MemorySanitizer (MSan) detects uninitialized reads. MSan
uses heavy-weight program transformation to keep state of allo-
cated objects. Memory allocations are tagged and uninitialized
reads are flagged. The typical slowdown of MSan is 3x. Note:
do not confuse MemorySanitizer (detects uninitialized reads)
and AddressSanitizer (detects spatial memory safety violations
and probabilistic memory reuse).

UndefinedBehaviorSanitizer (UBSan) detects undefined behav-
ior. It instruments code to trap on typical undefined behavior
in C/C++ programs. Slowdown depends on the amount and
frequency of checks. This is the only sanitizer that can be used
in production. For production use, a special minimal runtime
library is used with minimal attack surface. Detectable errors
are:

• Unsigned/misaligned pointers
• Signed integer overflow
• Conversion between floating point types leading to over-

flow
• Illegal use of NULL pointers
• Illegal pointer arithmetic
• and many more (check the documentation)

ThreadSanitizer (TSan) detects data races between threads. It
instruments writes to global and heap variables and records

71

6 Defense Strategies

which thread wrote the value last, allowing detecting of Write-
After-Write, Read-After-Write, Write-After-Read data races.
The typical slowdown of TSan is 5-15x with 5-15x memory
overhead.

HexType [11] detects type safety violations (type confusion). It
records the true type of allocated objects and makes all type
casts explicit. HexType implements type safety for C++. The
typical slowdown of HexType is 1.5x.

Alternatively, Valgrind [24] implements a sanitization frame-
work for binaries. Binaries are lifted into a high-level repre-
sentation that is instrumented. During execution, metadata is
kept depending on the selected instrumentation of the sanitizer.
Valgrind implements different memory safety and thread safety
sanitizers.

6.3.3 Fuzzing

Dynamic analysis techniques leverage a concrete execution
through the program to test a given policy. Fuzz testing is
a simple approach that creates program input to generate
different traces through the program with the intention to
trigger a crash. Crashing inputs are then collected and triaged
to fix bugs. Different approaches for fuzz testing exist with
different levels of program cooperation. Fuzzing can leverage
information about the input structure or the program structure
to improve over blind random input mutation.

While fuzzing, the process of providing random input to a
program to trigger unintended crashes, has been around for

72

6 Defense Strategies

Input Generation

Tests

Debug
Exe Coverage

Overview of the fuzzing process.

decades, we have recently seen a revival of techniques with
several papers improving fuzzing effectiveness at each top tier
security conference. The idea behind fuzzing is incredibly
simple: execute a program in a test environment with random
input and detect if it crashes. The fuzzing process is inherently
sound but incomplete. By producing test cases and observing if
the program under test crashes, fuzzing produces a witness for
each discovered crash. As a dynamic testing technique, fuzzing
is incomplete as it will likely neither cover all possible program
paths nor data-flow paths except when run for an infinite
amount of time. Fuzzing has seen a massive amount of attention
in recent years both from industry where fuzzing is used to
discover bugs to academia where new fuzzing techniques are
developed. Fuzzing strategies are inherently an optimization
problem where the available resources are used to discover
as many bugs as possible, covering as much of the program
functionality as possible through a probabilistic exploration
process. Due to its nature as a dynamic testing technique,
fuzzing faces several unique challenges:

73

6 Defense Strategies

• Input generation: fuzzers generate inputs based on a
mutation strategy to explore new state. The underlying
strategy determines how effectively the fuzzer explores
a given state space. A challenge for input generation is
the balance between exploring new control flow and data
flow.

• Detecting flaws: to discover flaws, fuzzers must distin-
guish between benign and buggy executions. Not every
bug results in an immediate segmentation fault and de-
tecting state violation is a challenging task, especially as
code generally does not come with a formal model.

• Preparing programs: fuzzing struggles with some aspects
of code such as fuzzing a complex API, checksums in file
formats, or hard comparisons such as password checks.
Preparing the fuzzing environment is a crucial step to
increase the efficiency of fuzzing.

• Evaluating fuzzing effectiveness: defining metrics to evalu-
ate the effectiveness for a fuzzing campaign is challenging.
For most programs the state space is (close to) infinite
and fuzzing is a brute force search in this state space.
Deciding when to, e.g., move to another target, path,
or input is a crucial aspect of fuzzing. Comparing dif-
ferent fuzzing techniques requires understanding of the
strengths of a fuzzer and the underlying statistics to
enable fair comparison.

AFL [36] is the state-of-the art fuzzer that uses mutational
input generation. AFL uses grey-box instrumentation to track
branch coverage and mutate fuzzing seeds based on previous

74

6 Defense Strategies

branch coverage. Branch coverage tracks the last two executed
basic blocks (resulting in a crude approximation of path cover-
age). New coverage is detected on the history of the last two
branches.

6.3.3.1 Input generation

Input generation is the first of two essential parts of the fuzzing
process. Every fuzzer must automatically generate test cases to
be run on the execution engine. The cost for generating a single
input should be low, following the underlying philosophy of
fuzzing where iterations are cheap. There are two fundamental
forms of input generation: model-based input generation and
mutation-based input generation. The first is aware of the input
format while the latter is not.

Knowledge of the input structure given through a grammar
enables model-based input generation to produce (mostly) valid
test cases. The grammar specifies the input format and implic-
itly the explorable state space. Based on the input specification,
the fuzzer can produce valid test cases that satisfy many checks
in the program such as valid state checks, dependencies between
fields, or checksums such as a CRC32. For example, without
an input specification the majority of randomly generated test
cases will fail the check for a correct checksum and quickly
error out without triggering any complex behavior. The input
specification allows input generation to balance the generated
test inputs according to the underlying input grammar. The
disadvantage of grammar-based input generation is the need
for a concrete input specification. Most input formats are not

75

6 Defense Strategies

formally described and will require an analyst to define the
intricate dependencies.

Mutation-based input generation requires a set of seed inputs
that trigger valid functionality in the program and then lever-
ages random mutation to modify these seeds. Providing a set
of valid inputs is significantly easier than formally specifying
an input format. The input mutation process then constantly
modifies these input seeds to trigger interesting behavior.

Orthogonally to the awareness of the input format, a fuzzer
can be aware of the program structure. Whitebox fuzzing
infers knowledge of the program structure through program
analysis or relies on an analyst to custom-tailor fuzzing for
each tested program, resulting in untenable cost. Blackbox
fuzzing blindly generates new input without reflection, severely
limiting progress of the fuzzer. Greybox fuzzing leverages
program instrumentation instead of program analysis to infer
coverage during the fuzzing campaign itself, merging analysis
and testing.

Coverage-guided greybox fuzzing combines mutation-based input
generation with program instrumentation to detect whenever a
mutated input reaches new coverage. Program instrumentation
tracks which areas of the code are executed and the coverage
profile is tied to specific inputs. Whenever an input mutation
generates new coverage, it is added to the set of inputs for
mutation. This approach is incredibly efficient due to the
low cost instrumentation but still results in broad program
coverage.

Modern fuzzing is heavily optimized and focuses on efficiency,

76

6 Defense Strategies

measured by the number of bugs found per time. Sometimes,
fuzzing efficiency is generalized as the number of crashes found
per time, but this may lead to problems as crashes may not be
unique and many crashes point to the same bug.

6.3.3.2 Execution engine

After generating the test cases, they must be executed in a con-
trolled environment to observe when a bug is triggered. The ex-
ecution engine takes the produced input, executes the program
under test, extracts runtime information such as coverage, and
detects crashes. Ideally a program would terminate whenever
a flaw is triggered. For example, an illegal pointer derefer-
ence on an unmapped memory page results in a segmentation
fault which terminates the program, allowing the executing
engine to detect the flaw. Unfortunately, only a small subset
of security violations will result in program crashes. Buffer
overflows into adjacent memory locations for example, may
only be detected later if the overwritten data should be used or
may never be detected at all. The challenge for this component
of the fuzzing process is to efficiently enable the detection of
policy violations. For example, without instrumentation only
illegal pointer dereferences to unmapped memory, control-flow
transfers to non-executable memory, division by zero, or similar
exceptions will trigger a fault.

To make security policies tractable, the program under test
may be instrumented with additional checks that detect vi-
olations early. Safety violations through undefined behavior
for code written in systems languages are particularly tricky.

77

6 Defense Strategies

Sanitization analyzes and instruments the program during the
compilation process to enforce selected properties. Address
Sanitizer [30], the most commonly used sanitizer, probabilisti-
cally detects spatial and temporal memory safety violations by
placing red-zones around allocated memory objects, keeping
track of allocated memory, and carefully checking memory ac-
cesses. Other sanitizers cover undefined behavior, uninitialized
memory, or type safety violations [11]. Each sanitizer requires
certain instrumentation that increases the performance cost.
The usability of sanitizers for fuzzing therefore has to be care-
fully evaluated as, on one hand, it makes error detection more
likely but, on the other hand, reduces fuzzing throughput.

6.3.3.3 Preparing programs

The key advantage of fuzzing is its incredible simplicity (and
massive parallelism). Due to this simplicity, fuzzing can get
stuck in local minima where continuous input generation will
not result in additional crashes or new coverage – the fuzzer
is stuck in front of a coverage wall. A common approach to
circumvent the coverage wall is to extract seed values used for
comparisons. These seed values are then used during the input
generation process. Orthogonally, a developer can comment
out hard checks such as CRC comparisons or checks for magic
values. Removing these non-critical checks from the program
requires that the developer is aware of what are critical safety
checks and what can be safely commented out.

Several recent extensions [31:@sanjay17ndss, @peng18sp,
@insu18sec] try to bypass the coverage wall by detecting when

78

6 Defense Strategies

the fuzzer gets stuck and then leveraging an auxiliary analysis
to either produce new inputs or to modify the program. It is
essential that this (sometimes heavy-weight) analysis is only
executed infrequently as alternating between analysis and
fuzzing is costly and reduces fuzzing throughput.

The concept of fuzzing libraries also faces the challenge of
experiencing low coverage during unguided fuzzing campaigns.
Programs often call exported library functions in sequence,
building up complex state in the process. The library functions
execute sanity checks and quickly detect illegal or missing state.
These checks make library fuzzing challenging as the fuzzer
is not aware of the dependencies between library functions.
Existing approaches such as libFuzzer [32]] require an analyst
to prepare a test program that calls the library functions in a
valid sequence to build up the necessary state to fuzz complex
functions.

6.3.3.4 Evaluating fuzzing

At a high-level, evaluating fuzzing is straightforward: if tech-
nique A finds more bugs than technique B, then technique A
is superior to technique B. In practice, there are challenging
questions that must be answered such as for how long the
techniques are evaluated, how bugs are identified, or what the
fuzzing environment is. A recent study [13] evaluated the com-
mon practices of recently published fuzzing techniques (and
therefore also serves as overview of the current state of the
art). The study identified common benchmarking crimes and
condensed their findings into five recommendations:

79

6 Defense Strategies

• A single execution is not enough due to the randomness
in the fuzzing process. To evaluate different mechanisms,
we require multiple trials and statistical tests to measure
noise.

• A single target is not enough to evaluate a fuzzer. Instead,
fuzzers should be evaluated across a broad set of target
programs to highlight advantages and disadvantages of a
given configuration.

• Heuristics cannot be used as the only way to measure
performance. For example, collecting crashing inputs
or even stack bucketing does not uniquely identify bugs.
Ground truth is needed to disambiguate crashing inputs
and to correctly count the number of discovered bugs. A
benchmark suite with ground truth will help.

• The choice of seeds must be documented as different
seeds provide vastly different starting configurations and
not all techniques cope with different seed characteristics
equally well.

• Fuzzing campaigns are generally executed for multiple
days to weeks. Comparing different mechanisms based
on a few hours of execution time is not enough. Fuzzing
must be evaluated for at least 24 hours, maybe even
longer.

6.3.3.5 Future fuzzing work

Fuzzing is currently an extremely hot research area in software
security with several new techniques being presented at each

80

6 Defense Strategies

top tier security conference. The research directions can be
grouped into improving input generation, reducing the perfor-
mance impact for each execution, better detection of security
violations, or pushing fuzzing to new domains such as kernel
fuzzing or hardware fuzzing. All these areas are exciting new
dimensions and it will be interesting to see how fuzzing can be
improved further.

6.3.3.6 Fuzzing Summary

With the advent of coverage-guided greybox fuzzing, dynamic
testing has seen a renaissance with many new techniques that
improve security testing. While incomplete, the advantage of
fuzzing is that each reported bug comes with a witness that
allows the deterministic reproduction of the bug. Sanitization,
the process of instrumenting code with additional software
guards helps to discover bugs closer to their source. Overall,
security testing remains challenging, especially for libraries
or complex code such as kernels or large software systems.
Given the massive recent improvements of fuzzing, there will
be exciting new results in the future. Fuzzing will help make our
systems more secure by finding bugs during the development
of code before they can cause any harm during deployment.

6.3.4 Symbolic Execution

Static analysis techniques analyze the source code (or binary)
for violations of a given policy. Static analysis frameworks usu-
ally combine a wide set of techniques to discover different types

81

6 Defense Strategies

of vulnerabilities based on abstract interpretation of the code
combined with control-flow and data-flow analysis. Abstract
interpretation transforms the semantics of the programming
language to simplify source code, translating it into a form
that allows reasoning over an abstract grammar. The advan-
tage of static analysis techniques is their ubiquity and simple
application to large code bases. A disadvantage is that they
may lead to large amounts of false positives.

Symbolic execution is an analysis technique that is somewhat
between static and dynamic analysis with many different flavors.
A symbolic execution engine reasons about program behavior
through “execution” with symbolic values. Concrete values
(input) are replaced with symbolic values. Symbolic values can
have any value, i.e, variable x instead of value 0x15. Symbolic
values capture all possible values. The symbolic state of the
application is tracked through a set of collected constraints.
Operations (read, write, arithmetic) become constraint col-
lection/modification operations as they add new constraints
to the collection, possibly summarizing existing constraints.
Symbolic execution allows unknown symbolic variables in the
evaluation.

Through this abstract interpretation, the program is turned
into a set of constraints. Instead of executing the program with
concrete input, all memory becomes symbolic and computation
updates the symbolic values. This allows a large amount of
traces through the program to be evaluated at the same time.
Symbolic execution is limited through the complexity of the
constraints. For each branch in the program, the amount of
state doubles as either the true or the false branch can be taken

82

6 Defense Strategies

which leads to a state explosion.

1 void func(int a, int b, int c) {
2 int x = 0, y = 0, z = 0;
3 if (a) x = -2;
4 if (b < 5) {
5 if (!a && c) y = 1;
6 z = 2;
7 }
8 assert(x + y + z != 3);
9 }
Listing 6.3: Symbolic execution example. The parameters a, b,

and c are symbolic.

A path condition is a quantifier-free formula over symbolic
inputs that encodes all branch decisions (so far). To determine
whether a path is feasible, the symbolic execution engine checks
if the path condition is satisfiable. Given the set of constraints,
an SMT solver provides satisfying assignment, counter example,
or timeout.

While symbolic execution gives a precise evaluation of all paths
in the program, it has a hard time with loops and recursions
which result in infinite execution traces. Path explosion is
another challenge as each branch doubles the number of paths
and state that is tracked. Environment modeling, e.g., through
system calls is also complex due to the amount of operating sys-
tem state that must be modeled. Lastly, symbolic data where
both the array data and the index are symbolic is challenging
as arbitrary data increases the number of possible solutions.

83

6 Defense Strategies

x=0, y=0, z=0

a
0x=-2

b
0
<5b

0
<5

!a
0
 && c

0

Condition:
!a

0
 && b

0
 >= 5

!a
0
 && c

0 Condition:
a

0
&& b

0
 >=5

Condition:
a

0
&& b

0
 < 5

&& !a
0
 && c

0

Condition:
a

0
 && b

0
 < 5

&& !(!a
0
 && c

0
) Condition:

!a
0
 && b

0
 < 5

&& !a
0
 && c

0

Condition:
!a

0
 && b

0
 < 5

&& !(!a
0
 && c

0
)

y=1
z=2

z=2

y=1
z=2

z=2

infeasible!

violation!

Constraint tracking along the different paths for the symbolic
execution example.

84

6 Defense Strategies

All these problems have in common that the complexity makes
the constraints explode, reducing the chances that the SMT
solver will find a solution before a timeout.

Concolic testing addresses the problems of symbolic execution
by leveraging a concrete execution trace to “base” the symbolic
execution to places nearby. Only constraints close to and along
the recorded trace are evaluated.

KLEE [6] is an example of a symbolic/concolic execution engine
based on the LLVM compiler. LLVM compiles the target
program with instrumentation for symbolic/concolic execution.
KLEE then models the environment and provides a selection
of many different search strategies and heuristics to constrain
symbolic execution.

6.4 Mitigations

Mitigations are the last line of defense against software flaws
that violate low level security policies such as memory safety,
type safety, or integer overflows. Logic flaws are out of scope
for mitigations as they are dependent on the requirements
and specification of an application which is (generally) not
expressed in a machine-readable way. Given that code was
neither verified nor tested for a bug, mitigations can check for
policy violations at runtime. Mitigations against flaws generally
result in some performance overhead due to these additional
checks. The majority of mitigations are therefore designed to
incur negligible performance or memory overhead, at the trade-
off of lower security guarantees. The reason why overhead is

85

6 Defense Strategies

not tolerated is the abstract risk of bugs. Mitigations protect
against unpatched and unknown bugs and, therefore, against
an abstract risk. The cost of running the mitigation is real.

The set of deployed mitigations is Data Execution Preven-
tion (DEP) to protect against code injection, Address Space
Layout Randomization (ASLR) to probabilistically protect
against information leaks, stack canaries to protect backward
edge control-flow, safe exception handling to protect against
injected C++ exception frames, and fortify source to protect
against format string attacks. Some stronger mitigations such
as Control-Flow Integrity (CFI), sandboxing, stack integrity,
and software-based fault isolation are being deployed on highly
exposed software with broad dissemination likely happening
soon.

6.4.1 Data Execution Prevention (DEP)/WˆX

Most widespread hardware did initially not distinguish between
code and data. Any readable data in a process’ address space
could be executed by simply transferring control-flow to that
data location. The memory management unit allowes pages
to be unmapped, readable, or writable. These three different
configurations are handled through a single bit in the page
table that marks if a page is writable or only readable. If a
page is not mapped then it is neither writable nor readable.
Any mapped page is always readable.

Data Execution Prevention (DEP) or WˆX (writable xor ex-
ecutable) enforces that any location in memory is either exe-
cutable or writable but never both. DEP enforces code integrity,

86

6 Defense Strategies

i.e., code cannot be modified or injected by an adversary. In
the absence of a just-in-time compiler or self-modifying code
in the process, code remains static and limited to the initial
set of executable code as loaded when the process started.

The assumption for designing this mitigation was that enabling
the CPU to distinguish between code and data would stop code
execution attacks. Modern architectures extended the page
table layout with an additional No-eXecute bit (Intel calls this
bit eXecute Disable, AMD calls it Enhanced Virus Protection,
and ARM calls it eXecute Never). This bit allows the MMU
to decide, on a per-page basis, if it is executable or not. If
the bit is set, then data on that page cannot be interpreted as
code and the processor will trap if control flow reaches that
page. Not all hardware supports the necessary extensions and
several software-only extensions were designed to give similar
guarantees, often at higher performance cost. Figure 6.1 shows
the changes to a process’ address space under DEP/WˆX.

This mitigation is a prime example of a successful mitigation
that results in negligible overhead due to a hardware extension.
The hardware-enabled mitigation is now used generally and
widely. DEP and WˆX stop an attacker from injecting new ex-
ecutable code in the address space of the application. However,
without any other mitigation, an application is still prone to
code reuse. See Section 5.4.2 and 5.4.3 for more details.

6.4.2 Address Space Layout Randomization (ASLR)

Any successful control-flow hijack attack depends on the at-
tacker overwriting a code pointer with a known alternate target.

87

6 Defense Strategies

Memory

stack

data

text

0xfff RWX

0x800 RWX

0x400 R-X

Memory

stack

data

text
0x400 R-X

0x800 RW-

0xfff RW-

No defenses DEP

Figure 6.1: Changes to the address space of a process for DE-
P/WˆX. Bombs show memory areas an exploit may
modify.

Address space randomization changes (randomizes) the process
memory layout. If the attacker does not know where a piece of
code (or data) is, then it cannot be reused in an attack. Under
address space randomization, an attacker must first learn and
recover the address layout. Alternatively, an attacker may
cleverly reuse existing pointers at well-known relative offsets.

Challenges for address space randomization are information
leakage through side channels or other leaks, low entropy that
enables brute forcing of the relocation strategy, and rerandom-
ization as long running processes will have their layout fixed
after the start of the process (due to performance trade-offs as
rerandomization would be costly). The security improvement
of address space randomization depends on (i) the entropy
available for each randomized location, (ii) the completeness of

88

6 Defense Strategies

randomization (i.e., are all objects randomized), and (iii) the
lack of any information leaks.

Address space randomization features several candidates that
can be placed at random locations in the address space:

• Randomize start of heap;
• Randomize start of stack;
• Randomize start of code (PIE for executable, PIC for

libraries);
• Randomize code at the instruction level (resulting in

prohibitive overhead);
• Randomize mmap allocated regions;
• Randomize individual allocations (malloc);
• Randomize the code itself, e.g., gap between functions,

order of functions, basic blocks;
• Randomize members of structs, e.g., padding, order.

There are different forms of fine-grained randomization with
different performance, complexity, and security trade-offs. Ad-
dress Space Layout Randomization (ASLR) is a form of ad-
dress space randomization that leverages virtual memory to
randomize parts of an address space. ASLR shuffles the start
addresses of the heap, the stack, all libraries, the executable,
and mmapped regions. ASLR is inherently page based (to limit
overhead) and the main cost is due to position independent
code [26].

ASLR requires virtual memory and support from the operating
system, linker/loader, and compiler. The implementation of
ASLR is straightforward and fits well into the virtual address
space provided by operating systems. When loading a library,

89

6 Defense Strategies

allocating a stack, or mmapping a region it has to be placed
somewhere in memory. Randomizing the low bits of the page
base address implements address space randomization at the
page level. Virtual memory is required to allow reshuffling of
addresses. The operating system must allow randomization for
random address for the initial binary and mmapped regions.
The linker/loader must prepare the process at a random loca-
tion in memory. The compiler must ensure that code references
other code locations relatively as each code block may be at
a different location every time the process starts. Figure 6.2
shows the change to the address space under ASLR.

Memory

stack

data

text

0xfff RWX

0x800 RWX

0x400 R-X

Memory

stack

data

text
0x4?? R-X

0x8?? RWX

0xf?? RWX

No defenses ASLR

Figure 6.2: Changes to the address space of a process under
ASLR.

The entropy of each section is key to security (if all sections
are randomized). For example, Figure 6.2 uses 8 bit of entropy
for each section. An attacker follows path of least resistance,
i.e., targets the object with the lowest entropy. Early ASLR

90

6 Defense Strategies

implementations had low entropy on the stack and no entropy
on x86 for the main executable (non-PIE executables). Linux
(through Exec Shield) uses 19 bits of entropy for the stack (16
byte aligned) and 8 bits of mmap entropy (4096 byte/page
aligned).

6.4.3 Stack integrity

Early code execution attacks often targeted stack-based buffer
overflows to inject code. An early defense targeted precisely
these buffer overflows. While memory safety would mitigate
this problem, adding full safety checks is not feasible due to high
performance overhead. Instead of checking each dereference to
detect arbitrary buffer overflows we can add a check for the
integrity of a certain variable. The goal for this mitigation is
to protect an application against stack-based overflows that
change the stored return instruction pointer or saved stack
base pointer. Stack integrity as a property ensures that both
the return instruction pointer and the stack pointer cannot be
modified illegally.

Legal modifications of the return instruction pointers include,
e.g., a trampoline that redirects control flow to an alternate lo-
cation (overwriting the stored return instruction pointer from a
call instruction) or so-called thunks that pop the return instruc-
tion pointer into a general purpose register (allowing code to in-
fer the current value of the instruction pointer through a call
nextInstruction; pop generalPurposeRegister sequence
for ISAs such as x86 that do not allow explicit access to the
instruction pointer). A stack pivot changes the stack pointer

91

6 Defense Strategies

and shifts the current stack frame to an alternate location
under the attacker’s control, e.g., by overwriting a spilled stack
pointer value.

Different mitigations implement some form of stack integrity.
The most common forms are stack canaries that place guards
around sensitive values, shadow stacks that store a copy of
sensitive data in an alternate location, and safe stacks which
split the stacks into sensitive, protected data and unprotected
data.

Interesting challenges for mitigations are, next to security guar-
antees, the support for exceptions in C++, setjmp/longjmp
for C programs, and tail call optimizations which replace the
call to a leaf function to reuse the same stack frame. These
features allow abnormal control flow on the return edge and
transfer code to stack frames higher up on the stack, potentially
skipping several frames in the chain.

6.4.3.1 Stack canaries

The key insight for stack canaries is that, in order to overwrite
the return instruction pointer or base stack pointer, all other
data on the way to those pointers must be overwritten as well.
This mitigation places a canary before the critical data and
adds instrumentation to (i) store the canary when the function
is entered and (ii) check its integrity right before the function
returns. The compiler may place all buffers at the end of the
stack frame and the canary just before the first buffer. This way,
all non-buffer local variables are protected against sequential

92

6 Defense Strategies

overwrites as well. Stack canaries are a purely compiler-based
defense.

The term stack canaries comes from mine workers who brought
canary birds along when they went into coal mines. The
birds would pass out from the lack of oxygen and alert the
mine workers, similar to how stack canaries signal a buffer
overflow when data adjacent to the return instruction pointer
is overwritten.

Figure 6.3: Canary bird, used by rescue workers in coal mines.
From WATFORD, 1970, public domain.

The weakness of this defense is that the stack canary only
protects against continuous overwrites as long as the attacker
does not know the canary. If the attacker knows the secret
or the attacker uses a direct overwrite then this mitigation is

93

6 Defense Strategies

not effective. An alternative to protect the return instruction
pointer through a canary is to encrypt the return instruction
pointer, e.g., by xoring it with a secret. The stack canary
instrumentation is surprisingly simple (note that, to support
a per-thread unique canary, this implementation uses thread
local storage that is relative to the %fs segment register):

1 ; Prologue:
2 mov %fs:0x28,%rax
3 mov %rax,-0x8(%rbp)
4 xor %eax,%eax
5
6 ; Epilogue:
7 mov -0x8(%rbp),%rcx
8 xor %fs:0x28,%rcx
9 je <safe_return>

10 callq <__stack_chk_fail@plt>
11 safe_return:
12 leaveq
13 ret

Listing 6.4: Prologue and epilogue for stack canaries.

6.4.3.2 Shadow stack

Shadow stacks are a strong form of stack integrity. The core
idea is that sensitive data such as the return instruction pointer
and any spilled stack pointers is moved to a second, protected
stack. Any flaws in the program can therefore no longer corrupt
the protected information. Code is instrumented to allocate

94

6 Defense Strategies

two stack frames for each function invocation: the regular stack
frame and the shadow stack frame. The two stack frames can
be of different size, i.e., the frame with the sensitive data may
be much smaller than the regular stack frame. Figure 6.4 shows
the shadow stack layout.

Old %RIP

Old %RBP (if saved)

Function parameter #n

...

Function parameter #2

Function parameter #1

Old %RIP

Old %RBP (if saved)

Local variable #1

Local variable #2

Caller data

Saved register #1

Saved register #2

Stacks grow

Old %RIP

Old %RSP

Old %RIP

Old %RSP

Shadow stackStack

Figure 6.4: Shadow stack layout.

A key question is how the shadow stack is protected from
arbitrary writes. Simply moving it to another memory lo-
cation stops continuous buffer overflows (similarly to stack
canaries) but cannot stop an adversary with arbitrary memory
modification capabilities. Shadow stacks result in about 5%
performance overhead due to the allocation of additional stack
frames and checks when returning from a function.

95

6 Defense Strategies

6.4.3.3 Safe stack

Safe stacks are a form of stack integrity that reduce the perfor-
mance penalty compared to shadow stacks. A shadow stack
always keeps two allocated stack frames for each function invo-
cation, resulting in overhead. Stack canaries are only added if
unsafe buffers are in a stack frame. The goal of safe stacks is to
achieve security guarantees of shadow stacks with low perfor-
mance overhead by only executing checks for unsafe objects.

All variables that are accessed in a safe way are allocated on
the safe stack. An optional unsafe stack frame contains all vari-
ables that may be accessed in an unsafe way. A compiler-based
analysis infers if unsafe pointer arithmetic is used on objects or
if references to local variables escape the current function. Any
objects that are only accessed in safe ways (i.e., no odd pointer
arithmetic and no reference to the object escapes the analysis
scope) remain on the safe stack frame. Unsafe stack frames are
only allocated when entering a function that contains unsafe
objects. This reduces the amount of unsafe stack frame allo-
cations, achieving low performance overhead while providing
equal security to a safe shadow stack implementation. Figure
6.5 shows the safe stack layout.

Safe Stack

ret address

Regular Stack

buf

int foo() {

 char buf[16];

 int r;

 r = scanf(“%s”, buf);

 return r;

}

r

Figure 6.5: Safe stack layout.

96

6 Defense Strategies

6.4.4 Safe Exception Handling (SEH)

Programs often handle irregular control-flow, e.g., when error
conditions are passed across several function call frames to
where they are handled. While C allows setjmp/longjmp
and goto for irregular control-flow, C++ provides a more
elegant and structured variant to handle irregular control-flow:
exceptions. C-style error handling is a crude tool to force
control-flow to alternate locations. The high irregularity and
immense flexibility (basically it is an unconditional jump across
several contexts and stack frames completely under the control
of the programmer) makes it impossible for the compiler to
reason about its semantics and opens up opportunities for bugs.
Exceptions are highly structured and allow the compiler to
encode the necessary conditions when and how control-flow
is transferred. Exception-safe code can safely recover from
thrown conditions. Compared to C, the control-flow semantics
are explicit in the programming language.

97

6 Defense Strategies

1 double div(double a, double b) {
2 if (b == 0)
3 throw "Division by zero!";
4 return (a/b);
5 }
6 ...
7 try {
8 result = div(foo, bar);
9 } catch (const char* msg) {

10 ...
11 }

Listing 6.5: Exception handling in C++

Exception handling requires support from the code genera-
tor (compiler) and the runtime system (libc or libc++). The
implementation for exceptions is compiler-specific (libunwind
for LLVM). When implementing exceptions, two different ap-
proaches exist: (a) inline exception information in stack frame
or (b) generate exception tables that are used when an excep-
tion is thrown.

For inline exception handling, the compiler generates code that
registers exceptions whenever a function is entered. Individual
exception frames are linked (similar to a linked list) across stack
frames. When an exception is thrown, the runtime system
traces the chain of exception frames to find the corresponding
handler. This approach is compact but results in overhead for
each function call (as metadata about exceptions has to be
allocated).

98

6 Defense Strategies

Exception tables trade-off per-function call costs to cost for
each thrown exception. During code generation, the compiler
emits per-function or per-object tables that link instruction
pointers to program state with respect to exception handling.
Throwing an exception is translated into a range query in
the corresponding table, locating the correct handler for the
exception. These tables are encoded very efficiently.

For both approaches, the encoding of the metadata may lead
to security problems. Given a memory corruption vulnerability,
an attacker can force throw an exception and may modify the
way exceptions are handled by changing the exception data
structures.

Microsoft Windows uses a combination of tables and inlined
exception handling. Each stack frame records (i) unwinding
information, (ii) the set of destructors that need to run, and
(iii) the exception handlers if a specific exception is thrown.
Unwinding information includes details on how the stack frame
needs to be adjusted when an exception is thrown, e.g., what
variables need to be stored from registers to memory or how
the stack frame needs to be adjusted. An exception may close
several scopes, resulting in objects going out of scope and
therefore their destructors have to be run. When entering
a function, a structured exception handling (SEH) record is
generated, pointing to a table with address ranges for try-catch
blocks and destructors. Handlers are kept in a linked list. To
attack a Windows C++ program, an attacker may overwrite
the first SEH record on the stack and point the handler to the
first gadget. In response to this attack vector, Microsoft Visual
Studio added two defenses: SafeSEH and SeHOP. SafeSEH

99

6 Defense Strategies

generates a compiler-backed list of allowed targets. If a record
points to an unknown target it is rejected. SeHOP initializes
the chain of registration records with a sentinel, i.e., the sentinel
is the first element inserted on the linked list and therefore
at the end of any exception list when an exception is thrown.
If no sentinel is present, the handler is not executed. The
two defenses guarantee that a set of benign targets is chained
together ending with the sentinel but they do not guarantee
that the right order of exceptions is executed nor the right
number of exception handlers.

GCC encodes all exception information in external tables.
When an exception is thrown, the tables are consulted to
learn which destructors need to run and what handlers are reg-
istered for the current location of the instruction pointer. This
results in less overhead in the non-exception case (as additional
code is only executed on-demand but otherwise jumped over).
The information tables can become large and heavyweight com-
pression is used, namely an interpreter that allows on-the-fly
construction of the necessary data. The efficient encoding has
a downside: the interpreter of the encoding can be abused for
Turing-complete computation [25].

6.4.5 Fortify Source

Format string vulnerabilities allow an attacker to read or write
arbitrary memory locations. A format string vulnerability
allows the adversary to control the first argument to a printf
function. See Section 8.2.2 for more details on format string
vulnerabilities.

100

6 Defense Strategies

To counter format string vulnerabilities, Microsoft simply
deprecated the %n modifier. This stops the arbitrary write
primitive but still allows the adversary to leak memory
contents under format string vulnerabilities. For Linux,
an extra check is added for format strings: (i) check for
buffer overflows (i.e., only benign elements are accessed), (ii)
check that the first argument is in a read-only area, and (iii)
check if all arguments are used. Linux checks the following
functions: mem{cpy,pcpy,move,set}, str{n}cpy, stp{n}cpy,
str{,n}cat, {,v}s{,n}printf. The GCC/glibc fortify source
patch distinguishes between four different cases: (i) known
correct – do not check; (ii) not known if correct but checkable,
i.e., compiler knows the length of the target – do check; (iii)
known incorrect – compiler warning and do check; and (iv)
not known if correct and not checkable – no check, overflows
may remain undetected.

6.4.6 Control-Flow Integrity

Control-Flow Integrity (CFI) [1,4] is a defense mechanism that
protects applications against control-flow hijack attacks. A
successful CFI mechanism ensures that the control-flow of the
application never leaves the predetermined, valid control-flow
that is defined at the source code/application level. This means
that an attacker cannot redirect control-flow to alternate or
new locations.

CFI relies on a static, often compile-time analysis that infers the
control-flow graph of the application. This analysis constructs

101

6 Defense Strategies

a set of valid targets for each indirect, forward edge, control-
flow transfer. For example, a function pointer of type void
(*funcPtr)(int, int) may only point to the functions in the
program that match the prototype and are address taken. At
runtime, CFI uses instrumentation to check if the observed
value of the function pointer is in the set of statically determined
valid targets. Figure 6.6 shows a CFI check and the target set
(and target reduction).

CHECK(fn);
(*fn)(x);

Figure 6.6: Control-Flow Integrity: at runtime, only valid tar-
gets (black arrows) are allowed, invalid targets (red
arrows) result in termination.

Given indirect forward control-flow transfers (calls through
function pointers in C/C++ or virtual dispatch in C++), what
are valid targets of these control-flow transfers? A precise
control-flow graph of the application lists all these valid targets
but creating a precise control-flow graph is challenging due to
aliasing, i.e., it is hard to infer the possible valid values of a
code pointer through a static analysis. The best static CFI
analysis would infer the precise set of targets for each location
based on context and flow sensitive alias analysis, potentially
with dynamic path tracking [4].

Due to the complexity of the analysis, existing CFI mechanisms

102

6 Defense Strategies

focus on alternate schemes to detect the sets of valid targets
on a per-location basis. The simplest CFI analysis scheme
simply uses the set of valid functions where any valid function
can be called from any indirect control-flow transfer location.
Another, more involved scheme counts the number of arguments
and creates one set for each count, i.e., all functions without
arguments, functions with 1 argument, functions with two
arguments, and so on. The current state of the art for C CFI
analysis leverages the function prototype and creates one set
of targets per function prototype. For C, the scheme can be
improved by measuring which functions are address taken. Only
functions that are address taken and somewhere assigned to a
function pointer can be used at runtime as pointer arithmetic
on function pointers is undefined. For C++, this scheme is
improved through class hierarchy analysis. The call site uses
a certain type and, given a class hierarchy which must be
available, only this type and subtypes in the inheritance chain
are allowed for this call location.

103

6 Defense Strategies

1 0xf000b400
2
3 int bar1(int b, int c, int d);
4
5 int bar2(char *str);
6
7 void bar3(char *str);
8
9 void B::foo(char *str);

10
11 class Greeter :: Base {... };
12 void Base::bar5(char *str);
13
14 void Greeter::sayHi(char *str);
15
16 class Related :: Greeter {... };
17 void Related::sayHi(char *str);
18
19 Greeter *o = new Greeter();
20 o->sayHi(char *str);

Listing 6.6: Example of precision trade-offs for different CFI
policies.

In the example above, let us look at the sayHi call in the last
line. The valid function policy would allow all functions except
the raw address 0xf000b400 which points somewhere into
the code area (but not to a valid function). The arity policy
would allow the set of bar2, bar3, foo, Base::bar5,
Greater::sayHi , Related::sayHi. The function prototype

104

6 Defense Strategies

policy removes bar2 from the previous set, resulting in bar3,
foo, Base::bar5, Greater::sayHi , Related::sayHi.
Note that for C, this is the most precise prototype-based
analysis possible. For the class hierarchy analysis, only the
two functions Greater::sayHi , Related::sayHi are in the
set, producing the smallest set of targets.

The different CFI analysis schemes provide a trade-off between
security (precision) and compatibility. Given imprecise (unsafe)
C code, the prototype-based check may fail for benign code.
While this is an actual bug that should be fixed, some people
argue that a mitigation should never prohibit benign code.
Therefore, Microsoft uses the valid function policy for their
Control-Flow Guard implementation of the CFI policy while
Google uses the function prototype for C and the class hierarchy
analysis for C++ code in the LLVM-CFI implementation.

CFI is an efficient mitigation to stop control-flow hijack attacks
but is no panacea. CFI allows the underlying bug to fire and
the memory corruption can be controlled by the attacker. The
defense only detects the deviation after the fact, i.e., when a
corrupted pointer is used in the program. Attackers are free
to modify arbitrary data and can leverage complex programs
to execute arbitrary computation without hijacking control
flow. Alternatively, imprecision in the analysis allows attackers
to choose arbitrary targets in the set of valid targets for each
control-flow location.

105

6 Defense Strategies

6.4.7 Code Pointer Integrity

Code Pointer Integrity (CPI) [16] is a defense mechanism that
protects applications against control-flow hijacking attacks.
While memory safety and type safety would protect against all
control-flow hijack attacks it results in a prohibitive overhead
when enforced on top of low-level languages. Conceptually,
memory safety protects code pointers against compromise.
Memory safety and type safety protect the integrity of all
pointers in a program. Unfortunately, memory safety and type
safety result in prohibitive overhead.

The core idea of CPI is to restrict memory safety to sensitive
pointers. Sensitive pointers are code pointers and pointers that,
directly or indirectly, point to code pointers. Enforcing integrity
(memory safety) for these pointers guarantees that a bug in
the program cannot modify these pointers and thereby cannot
hijack the control-flow. CPI is implemented as a compiler pass
that moves sensitive pointers to a safe (sandboxed) memory
area that is protected from adversarial access. Note that CPI
does not enforce type safety for sensitive pointers.

6.4.8 Sandboxing and Software-based Fault Isolation

In various contexts both trusted and untrusted code must
run in the same address space. The untrusted code must be
sandboxed so that it cannot access any of the code or data of
the trusted code while the trusted code may generally access
code and data of the untrusted code. The untrusted code
may only read/write its own data segment (and stack). Such

106

6 Defense Strategies

a compartmentalization primitive allows powerful use-cases,
e.g., running a binary plugin in the address space of a browser
without giving it access to the browser’s sensitive data or
mitigations (with potentially verified code) that keep sensitive
values protected from the remaining large code base that may
contain bugs.

On the 32-bit version of x86 segment registers allowed a separa-
tion of address spaces with segment registers enforcing a hard
separation. Unfortunately, in the x86_64 extension, segment
boundaries are no longer enforced.

Software-based Fault Isolation is a way to implement such a
separation of the address space between trusted and untrusted
parties. The memory access restriction can be implemented
through masking each memory access with a constant: and
rax, 0x00ffffff; mov [rax], 0xc0fe0000. The mask in
the example restricts the write to the low 24 bit/16 MB of the
address space.

Assuming that SFI is implemented by adding additional checks
before a memory write then SFI could be bypassed by using
an indirect jump to transfer control flow past the check but
before the write. On CISC architectures, a jump may even
transfer control into an instruction to execute an unintended
instruction (e.g., on x86, mov $0x80cd01b0, (%rax) contains
mov $1, %al; int $0x80). All indirect jumps therefore have
to be aligned to valid instruction beginnings and for write
instructions to before the check.

107

6 Defense Strategies

6.5 Summary

Several mitigations stop exploitation of unpatched or unknown
memory and type safety vulnerabilities. Mitigations have low
or negligible performance or runtime overhead due to the un-
quantified risk of bugs. Data Execution Prevention stops code
injection attacks, but does not stop code reuse attacks. Address
Space Layout Randomization is probabilistic, shuffles memory
space and is prone to information leaks. Stack Canaries are
probabilistic, do not protect against direct overwrites and are
prone to information leaks. Safe Exception Handling protects
exception handlers, reuse of handlers remains possible. For-
tify source protects static buffers and format strings. These
defenses fully mitigate code injection and probabilistically or
partially mitigate code reuse and control-flow hijack attacks.

Novel defenses further increase the cost for an attacker to
build a working exploit and reduce the chances of success.
Shadow stacks enforce stack integrity and protect against re-
turn oriented programming. Control-Flow Integrity restricts
forward-edge control-flow transfers to a small set. Sandboxing
and Software-based Fault Isolation limit unsafe modules to a
small area of code and/or data.

108

7 Case Studies

After discussing secure software development, security policies,
software testing strategies, mitigations, and attack vectors,
we will focus on several case studies that apply or refine the
software security process. Software security is not static but
must be adapted to a given situation to maximize protection.

We will evaluate two case studies: web security and mobile
security. For web security, the attacker model includes both
the server providing the web services and the browser or client
running the web application. For mobile security, the central
control over the market place allows the provider to thoroughly
test apps before they are installed.

7.1 Web security

Web security is a broad topic that would deserve its own book
due to the many aspects that need to be secured. In this Section,
we will look at three broad aspects of web security: protecting
the server, protecting the interaction between server and client,
and protecting the web browser. Web servers (and browsers)
are long running software applications that are exposed to
adversaries as they serve external requests. Generally, software

109

7 Case Studies

daemons are long running services that serve external requests.
Daemons often run in the background to provide functionalities
to a system or, over the network, to multiple concurrent clients.
A web server, mail server, or a DNS server are examples of
daemons.

7.1.1 Protecting long running services

After initialization, daemons run for a long time, from days to
weeks, to months without being restarted. Several mitigations
such as ASLR or stack integrity rely on probabilistic guarantees
where information is hidden from an adversary. Servers often
run multiple threads that are restarted after handling a certain
number of requests. Erring towards availability over security,
crashing threads are restarted. An adversary can therefore
leverage information leaks to recover secrets in a processes
address space such as the memory layout to bypass ASLR or
stack canary values to bypass stack canaries.

Daemons are complex as they serve requests in parallel through
multiple threads. As such they are optimized for performance
and leverage, e.g., distributed caches to reduce the per request
cost, and they offer broad functionalities for different clients.
This large complexity increases the risk for bugs. Complexity
results in more code and code size correlates with the number
of bugs in a given application.

As they are connected to the network, daemons are often ex-
posed to the internet where they can be attacked from any
remote location. The internet and the web are open plat-
forms, allowing anyone to connect and request services. This

110

7 Case Studies

increases the risk that someone will launch a remote attack.
Especially web servers provide functionality openly to users
without requiring authentication or identification of the user.

A reasonable approach to reduce the attack surface of daemons
is to break them into smaller components. These components
then serve as fault compartments and fail independently. The
overall idea is that when one component fails, others continue
to function without opening security holes. Components com-
municate through well-defined APIs and, if one component
is buggy, adversaries are restricted to the capabilities of the
buggy component and must interact only with the privileges of
that component. Without compartmentalization, the adversary
would gain all privileges required by the service instead of a
small subset.

A good example for compartmentalization are mail servers.
Mail servers have a plethora of tasks: sending and receiving
data from the network on a privileged port, parsing the mail
protocol, managing a pool of received and unsent messages,
providing access to stored messages for each user. The classic
approach (implemented in sendmail) is to provide a single
binary that executes all theses tasks. Due to the large amount
of privileges required (full access to the file system, access to the
network), the component runs as root with full administrator
privileges. As the mail server accepts connections from the
network, this results in a large attack surface and a prominent
target that has been attacked frequently.

The modern approach (implemented in qmail) breaks the
mailserver into a set of components that communicate with
each other. Separate modules run as separate user IDs to

111

7 Case Studies

provide isolation. Each ID has only limited access to a subset
of resources, enforcing least privilege. Only two components
run as root and suid root respectively. The central component
qmail-queue is privileged to run as qmailq user on behalf of
arbitrary users. This small component allows anyone to reg-
ister new mail in the mail queue. The qmail-send component
received messages from the queue and either delivers them
to qmail-rspawn to deliver them remotely or qmail-lspawn to
deliver them locally. The qmail-lspawn component runs as root
as it spawns a local delivery process with the correct target
userid (of the receiving user). The qmail-local process runs
on behalf of the target user and executes local mail filtering,
spam filtering, and user-specific scripts. Note that this enables
the mail server to allow customizable per-user filtering without
exposing any attack surface. For incoming email, either an
unprivileged network server listens for incoming messages and
executes spam filtering and other tests or a local mail injection
scripts passes messages to the qmail queue. Figure 7.1 gives
an overview of the qmail system.

7.1.2 Browser security

Protecting a browser is similar to protecting a daemon.
Browsers are long running processes (when have you last
restarted your browser?). Through tabs, browsers run multiple
contexts at the same time, often 10s or 100s of tabs are open
concurrently and each tab must be isolated from each other.

A browser enables an interesting attacker model as the adver-
sary can run JavaScript code on a victim’s computer. The

112

7 Case Studies

qmail-smtpd
(qmaild)

qmail-queue
(suid qmailq)

qmail-inject
(“user”)

qmail-send
(qmails)

qmail-rspawn
(qmailr)

qmail-remote
(qmailr)

qmail-lspawn
(root)

qmail-local
(sets uid user)

Network Local

Figure 7.1: QMail mail server that is broken into minimally
privileged components.

113

7 Case Studies

JavaScript compiler therefore needs to ensure that no informa-
tion leaks from the process into the JavaScript sandbox.

Similar to mail servers discussed in the previous section,
browsers can be implemented as single process with shared
state/heap and multiple threads (Firefox) or broken into
different processes (Chromium). For Chromium, each tab
corresponds to an individual process. The complex and error
prone task of parsing and rendering html is compartmentalized
in an unprotected process with limited interaction capabilities
to outside processes. This sandbox ensures that outside
interactions are limited and restricted to a well-known API.
Browsers are thoroughly tested to ensure that they follow
strict security guidelines.

7.1.3 Command injection

The Unix philosophy is to leverage the combination of simple
tools to achieve complex results. Many servers therefore lever-
age the int system(char *cmd) command to start new pro-
cesses to execute simple Unix commands. Potentially tainted
data from forms or user input is passed to these scripts or
programs as parameters. The system command is an example
where both code and data are mixed: both the command that
is executed and the arguments are passed in a single string.

Dynamic web pages, for example, execute code on the server.
This allows the web server to add rich content from other
sources such as databases or files, providing dynamic content
to the user. The dynamic web page executes as a script on
the server side to collect information, build up the page, and

114

7 Case Studies

send it back to the user. A content management system may
load content from the database, a set of files, and other remote
parties, then intersect the information with the site template,
add navigation modules, and send it back to the user.

1 <html><head><title>Display a file</title></head>
2 <body>
3 <? echo system("cat ".$_GET['file']); ?>
4 </body></html>

The PHP script above leverages the simple cat utility to return
the contents of a user supplied file back to the user. Unfortu-
nately, system executes a full shell, resulting in powerful com-
mand injection vulnerabilities. The arguments to system are
the string cat concatenated with the user-supplied value in the
parameter file, e.g., through http://web.site/?file=user.
For example ; allows chaining two commands such as
http://web.site/?file=user%3Bcat%20%2fetc%2fpasswd
to leak /etc/passwd. Simply blocking ; is not enough, the
user supplied data in file is untrusted and must be pruned
either through validation (comparing against a set of allowed
values) or escaping where the user-supplied values are clearly
marked as string, e.g., resulting in system("cat 'file; cat
/etc/passwd'") which would result in a file not found error.
Note that you should not write your own escape functions,
each web framework has their own escape functions that allow
for different contexts. Even better, instead of leveraging
system, simply open and read the file instead of launching a
set of sub processes.

115

7 Case Studies

Command injection attacks are enabled through the fact that
code and data share a communication channel. The system
function expects a single string for both the command and
the argument. A better system function would expect the
command as first argument and all the arguments as the second
argument. This is similar to code injection where, e.g., the
stack can contain both code and data, allowing a buffer overflow
to overwrite the instruction pointer to return to the stack.

7.1.4 SQL injection

SQL injection is similar to command injection: an SQL query
contains both code and data. For example: $sql = "SELECT
* FROM users WHERE email='" . $_GET['email'] . "'
AND pass='" . $_GET['pwd'] . ';" creates an SQL query
string with user input that can be sent to a database.
Unfortunately, the user-supplied parameters are not escaped.
An adversary may inject ' characters to escape queries and
inject commands. For example, an adversary may enter
asdf' OR 1=1 -- in the password field to bypass the password
check.

To mitigate SQL injection, we apply the same idea:
user-supplied arguments have to be validated or escaped.
Alternatively, the control and data channel should be separated
by using prepared SQL statements, similar to how printf
defines a format string and with arguments that are then
filled in: sql("SELECT * FROM users WHERE email=\$1
AND pwd=\$2", email, pwd).

116

7 Case Studies

7.1.5 Cross Site Scripting (XSS)

Cross Site Scripting (or XSS) exploits trust user has in a web
site. XSS enables an adversary to inject and execute JavaScript
(or other content) in the context of another web page. For exam-
ple, malicious JavaScript code may be injected into a banking
web page to execute on behalf of a user that is logged into her
bank account. This allows the adversary to extract username
and password or to issue counterfeit transactions. There are
three different kinds of XSS: persistent/stored, reflected, and
client-side XSS.

Persistent XSS modifies data stored on the server to include
JavaScript code. The adversary interacts with the web appli-
cation, storing the code on the server side. When the user
interacts with the web application, the server responds with a
page that includes the attacker-supplied code. An example of
persistent XSS is a simple chat application where the adversary
includes <script>alert('Hi there');</script> in the chat
message. This message is stored in a database on the server.
When the message is sent to the user, the JavaScript code is
executed on behalf of the user’s browser in the user’s session.
Persistent XSS is enabled through a lack of input sanitization
on the server side. Common locations of such errors are feed-
back forms, blog comments, or even product meta data (you
do not have to see the response to execute it). In this scenario,
the user only has to visit the compromised website.

Reflected XSS encodes the information as part of the request
which is then reflected through the server back to the user.
Instead of storing the JavaScript code on the server side, it

117

7 Case Studies

is encoded as part of the link that the user clicks on. A web
interface may return the query as part of the results, e.g.,
“Your search for ‘query’ returned 23 results.”. If the query is
not sanitized, then JavaScript code will be executed on the
user side. The code is encoded as part of the link and the user
is tricked to click on the prepared link. The bug for this type
of XSS is on the server side as well.

Client-side XSS targets lack of sanitization on the client side.
Large web applications contain a lot of JavaScript code that
also parses input data from, e.g., AJAX/JSON requests or
even input that is passed through the server. This JavaScript
code may contain bugs and missing sanitization that allows
the adversary to execute injected JavaScript in the context of
the web application as the user. Similarly to reflected XSS,
the user must follow a compromised link. The server does not
embed the JavaScript code into the page through server-side
processing but the user-side JavaScript parses the parameters
and misses the injected code. The bug is on the client side, in
the server-provided JavaScript.

7.1.6 Cross Site Request Forgery (XSRF)

Cross Site Request Forgery (XSRF) exploits trust a web app
has in user’s browser. Given that a user is logged into a web
page, certain links may trigger state changes on behalf of that
user. For example, the URL “http://web.site/?post=Hello”
may create a new public post on a bulletin board on behalf
of the user with the content ‘Hello’. An adversary that knows
the URL pattern can construct URLs that trigger actions on

118

7 Case Studies

behalf of a user if they click on it. Instead of creating a public
post, the action could be a money transfer from the user’s bank
account to the attacker.

7.2 Mobile security

Smart mobile devices have become ubiquitous: from smart
phones to tablets and smart watches, they all run a form of
mobile operating system that allows installation of apps from
a central market. Android is one of two dominant ecosystems
that cover the mobile platform. A hard challenge for Android
is the large amount of different devices from different hardware
vendors that is customized through different carriers. This
results in a slow update process as all these different devices
are hard to maintain and update.

The Android ecosystem enforces strict security policies that
reduce the risk of running malicious apps. The basic Android
system is configured to reduce the risk of software vulnerabilities
by using a secure basic system configuration combined with
strong mitigations. Individual apps are isolated from each
other. Applications are installed from a central market. Each
app in the market is vetted and tested through static and
dynamic analysis to detect malicious code.

7.2.1 Android system security

Android is built on Linux and therefore follows a basic Unix
system design. Instead of running multiple applications under

119

7 Case Studies

a single user id, each application is associated its own “user”.
Under the Unix design, each user has a home directory and
associated files. Each application started by the user can access
all the files of that user. Under Android, each app runs as its
own user id and is therefore restricted to access only the files
of that user. Interaction between apps is controlled through
intents and a well-defined API.

The Android system leverages a hardened Linux kernel to pro-
tect against attacks from malicious apps. Apps are isolated
from each other through the user id interface and the kernel is
configured to reduce side channels through, e.g., the “/proc” in-
terface. The filesystem follows a stringent set of permissions to
reduce exposure and an SELinux policy enforces access control
policies on processes. To protect against cold boot attacks or
hardware attacks, Android leverages full filesystem encryption
that is seeded from the user password. Services and daemons in
user space leverage stack canaries, integer overflow mitigation,
double free protection through the memory allocator, fortify
source, DEP, ASLR, PIE, relro (mapping relocations as read-
only after resolving them), and immediate binding (mapping
the procedure linkage table as read-only after forcefully re-
solving all inter-module links). Each Android update includes
security updates, patches, updates to the toolchain and tighter
security defaults. Overall, Android follows a secure system
default configuration and restricts interactions between apps
and the system.

120

7 Case Studies

7.2.2 Android market

Linux distributions like Debian or Ubuntu have long provided
a central market of curated applications. Developers provide
their applications and package maintainers make sure that they
fit well into the existing ecosystem of a distribution. Package
maintainers are responsible to backport patches and ensure
a smooth operation and integration between all the different
applications that make up a distribution.

The Android mobile app market is similar and provides a
central place where users can search for and install new apps.
Developers sign apps (and their required permissions) and
upload the apps to the market. Google can then vet and
check apps before they are provided to individual users. Each
application is tested for malicious code or behavior. Entrance to
the market is regulated. Each developer must pay an entrance
fee to upload apps. This entrance fee allows Google to offset
the cost of the vetting process. If a malicious app is detected,
all apps of a user can be blocked. This limits the amount of
malicious code a user can upload and increases the risks for
attackers that all their apps are blocked.

Whenever an app is updated and uploaded to the market,
it is distributed to all devices that have it installed. This
automatic update process minimizes the risk of exposure as
the new version is pushed to the clients quickly.

121

7 Case Studies

7.2.3 Permission model

The app permission model restricts what devices an app has
access to. The complex permission system allows a fine-grained
configuration on a per-app basis on access to Camera, location
information, Bluetooth services, telephony, SMS/MMS func-
tionality, and network/data connections. Without privileges,
an app is restricted to computation, graphics, and basic system
access.

The user can select if they accept the permissions required by
the app and if it matches the expected behavior. This model
empowers the user to make security decisions. Whether the
user is able to make informed decisions about security matters
remains questionable. The user already searched for an app
and is trying to install it. What are the chances that they will
be negatively influenced through an over-privileged app? A
better system to manage privileges remains to be found and is
an active research area.

122

8 Appendix

The Appendix contains sections on reverse engineering, con-
struction of shell code and ROP chains as well as details on
some attack primitives. Currently, the appendix is only a stub
but will be extended in the future.

8.1 Shellcode

Writing shellcode is an art that focuses on designing useful code
that runs under tight constraints. Shellcode executes outside
of a program context. Due to the missing context, shellcode
can only use variables that are currently in registers, relative
to the registers at the time of the exploit, at absolute addresses
in the process, or leaked through a prior information leak.

The construction of shellcode often follows constraints of the
vulnerability, e.g., only printable ASCII characters or no NULL
bytes. To initialise state for the exploit, shellcode often uses
tricks to recover state from the stack or relative addresses such
as calling/popping into a register to recover the instruction
pointer on x86 32-bit where the EIP register is not directly
addressable.

123

8 Appendix

8.2 ROP Chains

• Gadgets are a sequence of instructions ending in an in-
direct control-flow transfer (e.g., return, indirect call,
indirect jump)

• Prepare data and environment so that, e.g., pop instruc-
tions load data into registers

• A gadget invocation frame consists of a sequence of 0
to n data values and a pointer to the next gadget. The
gadget uses the data values and transfers control to the
next gadget

Simple ROP tutorial

8.2.1 Going past ROP: Control-Flow Bending

• Data-only attack: Overwriting arguments to exec()
• Non-control data attack: Overwriting is admin flag
• Control-Flow Bending (CFB): Modify function pointer

to valid alternate target

– Attacker-controlled execution along valid CFG
– Generalization of non-control-data attacks
– Each individual control-flow transfer is valid
– Execution trace may not match non-exploit case

Control-Flow Bending research paper

124

https://crypto.stanford.edu/~blynn/rop/
http://nebelwelt.net/publications/files/15SEC.pdf

8 Appendix

8.2.2 Format String Vulnerabilities

Functions that handle format strings (e.g., the printf family)
allow a flexible configuration of the printed data through the
first argument (the format string). If an attacker can control
the format string then they can often achieve full arbitrary
read and write primitives.

125

9 Acknowledgements

I would like to thank several people for feedback on the different
drafts of the book, for suggesting new topics to include, for
pointing out typos, and other valuable help in improving this
text!

• Anders Aspnäs for feedback on practical implications of
software engineering techniques;

• Nathan Burow for spelling and writing issues;
• Joachim Desroches for spelling and writing issues;
• David Dieulivol for spelling and writing issues;
• Frédéric Gerber for spelling and writing issues;
• Debbie Perouli for several writing suggestions;
• Josua Stuck for spelling and writing issues.

126

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. 2005. Control-flow integrity. In Proceedings of the acm
conference on computer and communications security. DOI:ht
tps://doi.org/10.1145/1102120.1102165

[2] Matt Bishop. 2002. Robust programming.

[3] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson,
Len Sassman, and Anna Shubina. 2011. Exploit program-
ming. From buffer overflows to ”weird machines” and theory
of computation. Usenix ;login: (2011).

[4] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen,
Michael Franz, Stefan Brunthaler, and Mathias Payer. 2017.
Control-Flow Integrity: Precision, Security, and Performance.
In ACM Computing Surveys. DOI:https://doi.org/10.1145/30
54924

[5] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias
Payer. 2018. CUP: Comprehensive User-Space Protection for
C/C++. In Proceedings of the 2018 acm on asia conference
on computer and communications security.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.
KLEE: Unassisted and automatic generation of high-coverage

127

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3054924

9 Acknowledgements

tests for complex systems programs. In Proceedings of the
usenix conference on operating systems design and implemen-
tation.

[7] Google. 2010. Google unit testing framework. Retrieved
from https://github.com/google/googletest

[8] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Her-
bert Bos, Cristiano Giuffrida, and Erik van der Kouwe. 2016.
TypeSanitizer: Practical Type Confusion Detection. In Proceed-
ings of the acm conference on computer and communications
security. DOI:https://doi.org/10.1145/2976749.2978405

[9] Michael Hicks. 2014. What is memory safety? Retrieved
July 21, 2014 from http://www.pl-enthusiast.net/2014/07/21/
memory-safety/

[10] Grace Hopper. 1947. Software bug etymology.

[11] Yuseok Jeon, Priyam Biswas, Scott A. Carr, Byoungyoung
Lee, and Mathias Payer. 2017. HexType: Efficient Detection
of Type Confusion Errors for C++. In Proceedings of the acm
conference on computer and communications security. DOI:ht
tps://doi.org/10.1145/2976749.2978405

[12] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W.
Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A
safe dialect of c. In Usenix atc ’02.

[13] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. 2018. Evaluating fuzz testing. In Pro-
ceedings of the 2018 acm sigsac conference on computer and
communications security.

128

https://github.com/google/googletest
https://doi.org/10.1145/2976749.2978405
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2976749.2978405

9 Acknowledgements

[14] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd acm
symposium on operating systems principles, 207–220. DOI:ht
tps://doi.org/10.1145/1629575.1629596

[15] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert
Bos, and Cristiano Giuffrida. 2018. Delta pointers: Buffer
overflow checks without the checks. In Proceedings of the
thirteenth eurosys conference.

[16] Volodymyr Kuzentsov, Mathias Payer, Laszlo Szekeres,
George Candea, Dawn Song, and R. Sekar. 214AD. Code
Pointer Integrity. In Operating systems design and implemen-
tation.

[17] Butler W. Lampson. 1974. Protection. ACM Operating
Systems Review (1974).

[18] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke
Lee. 2015. Type casting verification: Stopping an emerging
attack vector. In Usenix security symposium.

[19] Xavier Leroy. 2009. Formal verification of a realistic
compiler. Communications of the ACM 52, 7 (2009), 107–115.
Retrieved from http://gallium.inria.fr/~xleroy/publi/compcer
t-CACM.pdf

[20] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. 2015. Everything You Want to Know About
Pointer-Based Checking. In SNAPL.

129

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

9 Acknowledgements

[21] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin,
and Steve Zdancewic. 2009. SoftBound: Highly compatible
and complete spatial memory safety for c. In ACM conference
on programming languages design and implementation.

[22] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin,
and Steve Zdancewic. 2010. CETS: Compiler Enforced Tempo-
ral Safety for C. In ACM international symposium on memory
management.

[23] George C. Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. 2005. CCured: Type-safe
retrofitting of legacy software. ACM Trans. Program. Lang.
Syst. (2005).

[24] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A
framework for heavyweight dynamic binary instrumentation. In
Proceedings of the 28th acm sigplan conference on programming
language design and implementation. DOI:https://doi.org/10.1
145/1250734.1250746

[25] James Oakland and Sergey Bratus. 2011. Exploiting
the hard-working dwarf. In Usenix workshop on offensive
technologies.

[26] Mathias Payer. 2012. Too much PIE is bad for performance.
In Technical report http://nebelwelt.net/publications/f iles/1
2TRpie.pdf .

[27] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018.
T-fuzz: Fuzzing by program transformation. In IEEE interna-
tional symposium on security and privacy, 2018.

130

https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
http://nebelwelt.net/publications/files/12TRpie.pdf
http://nebelwelt.net/publications/files/12TRpie.pdf

9 Acknowledgements

[28] Google Chromium Project. 2013. Undefined behavior
sanitizer.

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. 2017. Vuzzer:
Application-aware evolutionary fuzzing. In Proceedings of the
network and distributed system security symposium (ndss).

[30] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: A
fast address sanity checker. In USENIX atc 2012.

[31] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. 2016. Driller:
Augmenting fuzzing through selective symbolic execution. In
NDSS.

[32] LLVM team. 2018. Libfuzzer: A library for coverage-
guided fuzz testing (within llvm).

[33] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. 1993. Efficient software-based fault isolation.
In ACM symposium on operating systems principles. DOI:https:
//doi.org/10.1145/168619.168635

[34] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T.
Ormandy, S. Okasaka, N. Narula, and N. Fullagar. 2009.
Native client: A sandbox for portable, untrusted x86 native
code. In IEEE symposium on security and privacy. DOI:https:
//doi.org/10.1109/SP.2009.25

[35] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. 2018. QSYM: A practical concolic execution

131

https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1109/SP.2009.25

9 Acknowledgements

engine tailored for hybrid fuzzing. In 27th usenix security
symposium (usenix security 18).

[36] Michal Zalewski. 2014. Technical whitepaper for afl-fuzz.
Retrieved from http://lcamtuf.coredump.cx/afl/technical_det
ails.txt

132

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Software and System Security Principles
	Authentication
	Access Rights
	Confidentiality, Integrity, and Availability
	Isolation
	Least Privilege
	Compartmentalization
	Threat Model
	Bug versus Vulnerability
	Summary

	Secure Software Life Cycle
	Software Design
	Software Implementation
	Software Testing
	Continuous Updates and Patches
	Modern Software Engineering
	Summary

	Memory and Type Safety
	Pointer Capabilities
	Memory Safety
	Spatial Memory Safety
	Temporal Memory Safety
	A Definition of Memory Safety
	Practical Memory Safety

	Type Safety
	Summary

	Attack Vectors
	Denial of Service (DoS)
	Information Leakage
	Confused Deputy
	Privilege Escalation
	Control-Flow Hijacking
	Code Injection
	Code Reuse

	Summary

	Defense Strategies
	Software Verification
	Language-based Security
	Testing
	Manual Testing
	Sanitizers
	Fuzzing
	Symbolic Execution

	Mitigations
	Data Execution Prevention (DEP)/W^X
	Address Space Layout Randomization (ASLR)
	Stack integrity
	Safe Exception Handling (SEH)
	Fortify Source
	Control-Flow Integrity
	Code Pointer Integrity
	Sandboxing and Software-based Fault Isolation

	Summary

	Case Studies
	Web security
	Protecting long running services
	Browser security
	Command injection
	SQL injection
	Cross Site Scripting (XSS)
	Cross Site Request Forgery (XSRF)

	Mobile security
	Android system security
	Android market
	Permission model

	Appendix
	Shellcode
	ROP Chains
	Going past ROP: Control-Flow Bending
	Format String Vulnerabilities

	Acknowledgements
	References

