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Networking 101

Thursday, October 23, 2025
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Announcements

￭ Project 3: WebSec released
￭ Deadline: Thursday, November 6th by 11:59PM
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Announcements

￭ Project 2 grades are now available on Canvas

￭ Statistics:
￭ Average score across all teams: 93.39%
￭ Three solved one of the extra credit targets 

 
￭ Fantastic job!
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Announcements

￭ Project 2 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)
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Project 2 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 10/27 via Google Form
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Announcements
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Announcements
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Questions?
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Last time on CS 4440…
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Isolation-based Web Security
HTTPS, SSL, and TLS
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￭ Confidentiality
￭ ???

￭ Integrity
￭ ???

￭ Privacy
￭ ???
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Client-side web security should uphold…
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Client-side web security should uphold…

￭ Confidentiality
￭ My sensitive information stays private

￭ Integrity
￭ My computer and data aren’t tampered

￭ Privacy
￭ My online activities are known only to me
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Client-side Web Defenses

￭ Multi-process Browsing
￭ ??? 
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￭ Multi-process Browsing
￭ Each tab, plugin, etc. gets 

its own unique process
￭ Leverage power of MMU to 

enforce process isolation
￭ Compromised process can’t 

read/write memory from 
other page processes

￭ Caveat: 
￭ ???
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Client-side Web Defenses



Stefan Nagy

￭ Multi-process Browsing
￭ Each tab, plugin, etc. gets 

its own unique process
￭ Leverage power of MMU to 

enforce process isolation
￭ Compromised process can’t 

read/write memory from 
other page processes

￭ Caveat: 
￭ More tabs, more plugins, 

etc. creates more overhead
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Client-side Web Defenses
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￭ Remote Pixel Streaming 
￭ ??? 
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Client-side Web Defenses
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￭ Remote Pixel Streaming
￭ Browser lives in the cloud, 

not the client’s system
￭ Rendering done in cloud, not 

on client’s system
￭ Client only gets “streamed” 

version of rendered pages
￭ Thwarts client-side attacks 

￭ Caveat: 
￭ ???
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Client-side Web Defenses
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￭ Remote Pixel Streaming
￭ Browser lives in the cloud, 

not the client’s system
￭ Rendering done in cloud, not 

on client’s system
￭ Client only gets “streamed” 

version of rendered pages
￭ Thwarts client-side attacks 

￭ Caveat:  
￭ Consumes lots of bandwith
￭ Bulkier browsing experience
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Client-side Web Defenses
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￭ DOM Tree Mirroring
￭ ???
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Client-side Web Defenses
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￭ DOM Tree Mirroring
￭ Filters-out DOM elements 

deemed to be unsafe
￭ User only gets “safe” DOM 
￭ List of undesired elements 

is defined ahead of time

￭ Caveat: 
￭ ???
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￭ DOM Tree Mirroring
￭ Filters-out DOM elements 

deemed to be unsafe
￭ User only gets “safe” DOM 
￭ List of undesired elements 

is defined ahead of time

￭ Caveat: 
￭ Need to constantly update 

list of unsafe elements
￭ Must retrofit browsers
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Client-side Web Defenses
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￭ Tagged JS Sandboxing
￭ ???
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Client-side Web Defenses
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￭ Tagged JS Sandboxing
￭ Follow Same Origin Policy
￭ Block JavaScript access 

based on site’s origin
￭ Scripts from same origin 

can read/write/interact 
with others from origin

￭ Scripts from different 
origin denied access

￭ Caveat: 
￭ ???
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Client-side Web Defenses
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￭ Tagged JS Sandboxing
￭ Follow Same Origin Policy
￭ Block JavaScript access 

based on site’s origin
￭ Scripts from same origin 

can read/write/interact 
with others from origin

￭ Scripts from different origin 
denied access

￭ Caveat: 
￭ Doesn’t stop XSS attacks
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Client-side Web Defenses
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The Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)
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￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://cs4440.eng.utah.edu/project1
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Candidate Request SOP Result Explanation

https://cs4440.eng.utah.edu/project3

http://cs4440.eng.utah.edu/project3/sqlinject0

ftp://cs4440.eng.utah.edu

http://www.cs4440.eng.utah.edu

https://eng.utah.edu/

The Same-origin Policy
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￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://cs4440.eng.utah.edu/project1
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Candidate Request SOP Result Explanation

https://cs4440.eng.utah.edu/project3 FAIL Different protocol (https)

http://cs4440.eng.utah.edu/project3/sqlinject0 PASS Same protocol and host

ftp://cs4440.eng.utah.edu FAIL Different protocol (ftp)

http://www.cs4440.eng.utah.edu FAIL Different host (www)

https://eng.utah.edu/ FAIL Different protocol and host

The Same-origin Policy
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Secure web communication should uphold…

￭ Integrity
￭ ???

￭ Confidentiality
￭ ???

￭ Authenticity
￭ ??? 
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Secure web communication should uphold…

￭ Integrity
￭ Messages I send should not be tampered

￭ Confidentiality
￭ Messages private to only involved parties

￭ Authenticity
￭ I should know exactly who I’m talking to 
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The TLS Handshake

29

Client Hello: Here’s Ciphers I support, and a random
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The TLS Handshake

30

Server Hello: Chosen Cipher

Certificate: Here is my Certificate with my PubKey

Here’s your random back encrypted with my PrivKey

Client Hello: Here’s Ciphers I support, and a random
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The TLS Handshake

31

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey
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The TLS Handshake

32

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Switch to a Symmetric Cipher

Switch to a Symmetric Cipher
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Higher-level TLS Handshake

33

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”
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Higher-level TLS Handshake

34

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”
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Higher-level TLS Handshake

35

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the 
Server-encrypted random via Server’s public key and checking it to the original.
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Higher-level TLS Handshake

36

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the 
Server-encrypted random via Server’s public key and checking it to the original.

 Client says: “Great! You are who you say you are. Here’s our symmetric key.”
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Higher-level TLS Handshake

37

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the 
Server-encrypted random via Server’s public key and checking it to the original.

 Client says: “Great! You are who you say you are. Here’s our symmetric key.”

We do not expect you to memorize 
the hairy details about SSL/TLS!



Stefan Nagy 38



Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate: ???
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Our HTTPS Ecosystem

￭ Certificate: the verifiable “proof” of the server’s authenticity
￭ The client (i.e., you) wants to know it is talking to who it believes it is
￭ Also contains the server’s public key, issuer information, expiration, etc.
￭ Your browser does lots of checks to ensure it’s dealing with a valid certificate!

40

Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm:  sha1WithRSAEncryption 

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5
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Our HTTPS Ecosystem

￭ Certificate: the verifiable “proof” of the server’s authenticity
￭ The client (i.e., you) wants to know it is talking to who it believes it is
￭ Also contains the server’s public key, issuer information, expiration, etc.
￭ Your browser does lots of checks to ensure it’s dealing with a valid certificate!
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Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm:  sha1WithRSAEncryption 

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

“THEY ARE WHO WE 
THOUGHT THEY WERE” 

- the client 

“THEY ARE WHO WE 
THOUGHT THEY WERE” 

- the client 

“THEY ARE WHO WE 
THOUGHT THEY WERE” 

- the client 

“THEY ARE WHO WE 
THOUGHT THEY WERE” 

- the client 

“THEY ARE WHO WE 
THOUGHT THEY WERE” 

- the client 
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Our HTTPS Ecosystem

￭ Certificate Authority: ???
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Our HTTPS Ecosystem

￭ Certificate Authority: the trusted 
entity that vouches for certificate
￭ Acts as a notary for server’s certificate
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Our HTTPS Ecosystem

￭ Certificate Authority: the trusted 
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together
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Our HTTPS Ecosystem

￭ Certificate Authority: the trusted 
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together
￭ Links are intermediate certificates
￭ Ultimately begins in a root certificate

￭ Your browser “walks” chain to 
locate certificate that it trusts

￭ Anyone can sign a certificate… 
￭ But if not chained to a root 

certificate, it is not valid!
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Our HTTPS Ecosystem

￭ Certificate Authority: the trusted 
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together
￭ Links are intermediate certificates
￭ Ultimately begins in a root certificate

￭ Your browser “walks” chain to 
locate certificate that it trusts

￭ Anyone can sign a certificate… 
￭ But if not chained to a root 

certificate, it is not valid!
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Is HTTPS completely bullet-proof?
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Attacking HTTPS: via HTTP

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: ???

47

HTTPS

HTTP
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Attacking HTTPS: via HTTP

48

HTTPS

HTTP

POST /login HTTP/1.1 
Host: example.com 
Content-Type: 
application/x-www-form-urlencoded 
username=victim&password=h4ck3d

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: intercept & force HTTP
￭ Attacker intercepts & reads client requests
￭ Steal passwords of yours on that site
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Attacking HTTPS: via HTTP

49

HTTPS

HTTP

POST /login HTTP/1.1 
Host: example.com 
Content-Type: 
application/x-www-form-urlencoded 
username=victim&password=h4ck3d

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: intercept & force HTTP
￭ Attacker intercepts & reads client requests
￭ Steal passwords of yours on that site

￭ Nowadays thwarted via browsers 
￭ User would need to add an exception
￭ Possible through social engineering?

Modern web 
browsers block 
HTTP by default
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Attacking HTTPS: via HTTP

50

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: ???

HTTPS

HTTP
utah.edu
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Attacking HTTPS: via HTTP

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?

51

HTTPS

HTTP
utah.edu
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Attacking HTTPS: via HTTP

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?
￭ HTTP-transmitted script is prevented from 

accessing the HTTPS page’s DOM…
￭ But DOM-agnostic scripts not blocked 

￭ E.g., malicious event handlers!

53

HTTPS

HTTP
utah.edu

window.onload = function() 
{ 
    alert("PWNED SOP!"); 
}
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Attacking HTTPS: via HTTP

54

HTTP

HTTP
utah.edu

window.onload = function() 
{ 
    alert("PWNED SOP!"); 
}

Modern web 
browsers block 
mixed content

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?
￭ HTTP-transmitted script is prevented from 

accessing the HTTPS page’s DOM…
￭ But DOM-agnostic scripts not blocked 

￭ E.g., malicious event handlers!



Stefan Nagy

Attacking HTTPS: via Key Theft
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Attacking HTTPS: via Key Theft

￭ What can happen if…
￭ Only server’s private key stolen:

￭ ???
￭ Only client’s private key stolen:

￭ ??? 
￭ Both private keys are stolen:

￭ ???
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Attacking HTTPS: via Key Theft

￭ What can happen if…
￭ Only server’s private key stolen:

￭ Fake comms to the client!
￭ Only client’s private key stolen:

￭ Fake comms to the server!
￭ Both private keys are stolen:

￭ Full man-in-the-middle!

￭ Don’t leave your private keys 
lying around on public web!
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Other ways to attack HTTPS?

￭ Certificate Authorities are what the security of HTTPS depends on
￭ If an attacker manages to breach a CA, they can sign any certificate they want
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Other ways to attack HTTPS?

￭ Certificate Authorities are what the security of HTTPS depends on
￭ If an attacker manages to breach a CA, they can sign any certificate they want

59

Result: attacker can impersonate 
websites that you use—your browser 
will accept their certs as legitimate!
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Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was 

issued to an attacker and subsequently used 
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert 
in the wild… and posted it to pastebin
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Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was 

issued to an attacker and subsequently used 
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert 
in the wild… and posted it to pastebin

￭ DigiNotar later admitted that dozens of 
fraudulent certificates were created
￭ Google, Microsoft, Apple and Mozilla all 

revoked the root Diginotar certificate
￭ Dutch Government took over Diginotar
￭ Diginotar went bankrupt and died
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Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was 

issued to an attacker and subsequently used 
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert 
in the wild… and posted it to pastebin

￭ DigiNotar later admitted that dozens of 
fraudulent certificates were created
￭ Google, Microsoft, Apple and Mozilla all 

revoked the root Diginotar certificate
￭ Dutch Government took over Diginotar
￭ Diginotar went bankrupt and died
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Attacking HTTPS: Antivirus Eavesdropping

￭ Some antivirus software products 
will also intercept SSL/TLS traffic
￭ Idea: install root certificate and pre-empt 

client receiving server’s real certificate
￭ Why root cert? 

63
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Attacking HTTPS: Antivirus Eavesdropping

￭ Some antivirus software products 
will also intercept SSL/TLS traffic
￭ Idea: install root certificate and pre-empt 

client receiving server’s real certificate
￭ Why root cert? Trusted by browser 

￭ Intercept/decrypt both comm. directions
￭ Client → Server and Server → Client
￭ Reencrypt after scanning complete
￭ To both sides, all seems normal 

￭ Not uncommon in corporate laptops 
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Attacking HTTPS: Employer Eavesdropping

￭ Can your employer-issued laptop subvert HTTPS?
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Attacking HTTPS: Employer Eavesdropping

￭ Can your employer-issued laptop subvert HTTPS?
￭ No… they’re just installing their own custom root certs!
￭ They own the root certificate = they own the trust chain

66
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Questions?

67
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This time on CS 4440…

68

Introduction to Networking
The Physical, Link, Network, 

Transport, and Application Layers
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What is the Internet?

69

￭ What is it?
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What is the Internet?

70

￭ What is it?
￭ How you trash-talk players in COD game lobbies
￭ How Wall Street trades shares faster than you
￭ How the CS 4440 website is distributed to you
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What really is the Internet?

￭ Connections
￭ HTTP, HTTPS, FTP, VOIP

￭ The Web
￭ Content viewed in a web browser

￭ How many internets?
￭ U.S.A. vs. China
￭ TOR vs. non-TOR

￭ What separates them?

71
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Analogy: Air Travel

￭ Each layer implements a service

72

Ticket (purchase)

Baggage (check)

Gate (load)

Runway (takeoff)

Ticket (complain)

Baggage (claim)

Gate (unload)

Runway (land)

Departure Airport Destination Airport

Routing (flying)
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The 5-layer Internet

73

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber
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The 5-layer Internet

74

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Applications 
initiating 

connections
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The 5-layer Internet
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Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Establishes 
connections
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The 5-layer Internet
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Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Forms/sends 
packets 

between IP 
addresses
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The 5-layer Internet
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Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Creates and 
sends frames
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The 5-layer Internet
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Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber
Sends the 

physical bits
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The 5-layer Internet
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Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

The Internet
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Networking Devices

￭ Network layer: 
￭ Router

￭ Connects different networks

￭ Data Link layer: 
￭ Switch

￭ Connects multiple devices on 
the same network

￭ Modem
￭ Aka modulator/demodulator
￭ Interface between 0/1 bits 

and cable/telephone wire

80

Modem

Router

Switches

Hosts
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Internet Packet Encapsulation

￭ How packets are generated and sent

81

Application 
Message

App Layer
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Internet Packet Encapsulation

￭ How packets are generated and sent

82

Application 
Message

Segment 
Data

Segment 
Header

App Layer

Transport Layer
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Internet Packet Encapsulation

￭ How packets are generated and sent
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Application 
Message

Segment 
Data

Segment 
Header

Packet 
Header Packet Data

App Layer

Transport Layer

Network Layer
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Internet Packet Encapsulation

￭ How packets are generated and sent
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Application 
Message

Segment 
Data

Segment 
Header

Packet 
Header

Frame 
Header

Frame 
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer
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Internet Packet Encapsulation

￭ How packets are generated and sent

85

Application 
Message

Segment 
Data

Segment 
Header

Packet 
Header

Frame 
Header

Frame 
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

What you 
care about
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Internet Packet Encapsulation

￭ How packets are generated and sent
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Application 
Message

Segment 
Data

Segment 
Header

Packet 
Header

Frame 
Header

Frame 
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

What really 
gets sent
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Internet Packet Encapsulation

￭ How packets are generated and sent
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Layering of Protocols
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Layering of Protocols
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Layering of Protocols
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HTTP Application Layer

Network layer
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Transport layer

SSHDNS NTPSMTPFTP

Why do we rely on layering?

Transparency, modularization
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Questions?
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The Physical Layer
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Layer 5: The Physical Layer

￭ Last layer in the 5-layer network model
￭ The physical means of sending/receiving data

￭ Examples of physical layers?
￭ ???
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Layer 5: The Physical Layer

￭ Last layer in the 5-layer network model
￭ The physical means of sending/receiving data

￭ Examples of physical layers?
￭ Radio waves
￭ Telephone lines
￭ Fiber optic cables
￭ Undersea submarine cables
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Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes! 

￭ Each member physically linked by cables
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Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes! 

￭ Each member physically linked by cables

￭ By the 1990s: connected by Telephone lines
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Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes! 

￭ Each member physically linked by cables

￭ By the 1990s: connected by Telephone lines

￭ Today: continents linked via undersea cables
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The Link Layer
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Layer 4: Link / Data-Link

￭ Hosts and switches: nodes
￭ Switches interface with hosts

￭ Channels connecting adjacent 
nodes along a path: links
￭ Wired links
￭ Wireless links
￭ LANs

￭ Layer-2 packet: frame 
￭ Encapsulates datagram of the 

previous three TCP/IP layers
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MAC Addresses

￭ Most network interfaces come with a predefined MAC address 
￭ 48-bit number usually represented in hex
￭ E.g., 00-1A-92-D4-BF-86

￭ The First three octets of any MAC address are IEEE-assigned 
Organizationally Unique Identifiers
￭ Cisco: 00-1A-A1
￭ D-Link: 00-1B-11
￭ ASUSTek: 00-1A-92
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MAC Addresses

￭ Most network interfaces come with a predefined MAC address 
￭ 48-bit number usually represented in hex
￭ E.g., 00-1A-92-D4-BF-86

￭ The First three octets of any MAC address are IEEE-assigned 
Organizationally Unique Identifiers
￭ Cisco: 00-1A-A1
￭ D-Link: 00-1B-11
￭ ASUSTek: 00-1A-92

￭ MACs can be reconfigured by network interface driver software
￭ This makes MAC address filtering insecure—they can easily be spoofed!
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Ethernet

￭ The “dominant” wired LAN technology: 
￭ First widely used LAN technology
￭ Simpler, cheaper than token LANs and ATM
￭ Kept up with speed race: 10 Mbps – 100 Gbps 

￭ Ethernet Frame
￭ How the data is packaged up, sent/received
￭ Destination and source MACs, payload, and checksum
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Where is the link layer implemented?

￭ In each and every host!
￭ “Adaptor” (aka network interface card)

￭ Ethernet card
￭ 802.11 card
￭ Ethernet chipset

￭ Implements link and physical layer
￭ Attaches into host’s system buses
￭ Combination of hardware and firmware

103



Stefan Nagy

The Network Layer
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Layer 3: Network

￭ Deliver segment from sending to receiving hosts 
￭ Sender encapsulates segments into IP datagrams
￭ Receiver delivers segments to transport layer
￭ Delivery based on logical addressing (i.e., IP addresses)

￭ Network layer protocols in every host, router
￭ Router checks headers of IP datagrams passing through
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Network Layer Functions

￭ Routing: determine route taken 
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for 

the packet to its destination

106



Stefan Nagy

Network Layer Functions

￭ Routing: determine route taken 
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for 

the packet to its destination

￭ Forwarding: move packets from 
router’s input to router output
￭ Can’t store full IP addrs—too huge!
￭ Instead, a table based on IP prefixes 

￭ Get prefix from input packet
￭ Choose its corresponding link
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Network Layer Functions

￭ Routing: determine route taken 
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for 

the packet to its destination

￭ Forwarding: move packets from 
router’s input to router output
￭ Can’t store full IP addrs—too huge!
￭ Instead, a table based on IP prefixes 

￭ Get prefix from input packet
￭ Choose its corresponding link
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Internet Protocol

￭ IP addresses: routes datagrams in Internet
￭ IPv4: 32 bit address
￭ IPv6: 128 bit address

￭ Two parts: network and host
￭ Network: used to route packets (ZIP code)
￭ Host: identifies an individual host (house number)
￭ Split between network/host based on address class
￭ Usually in dotted decimal notation: 141.211.144.212

￭ Each number represents 8 bits:  0–255
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IP Packets

￭ Header: 
￭ Source IP address
￭ Destination IP address
￭ Lots of other information

￭ Version, length, checksum
￭ Selected transport protocol

￭ Data: 
￭ The message!

￭ E.g., string of letters
￭ E.g., web page characters
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The Transport Layer
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Layer 2: Transport

￭ Provides logical communication 
between application processes 
running on different hosts

￭ Transport protocols in end systems 
￭ Send side: breaks app messages into 

segments, passes to  network layer
￭ Receive side: reassembles segments 

into messages, passes to app layer

￭ Nowadays, multiple transport 
protocols available
￭ Internet: TCP and UDP
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Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
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Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server
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Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram  Protocol
￭ Simpler protocol for transmission without any error-checking 
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Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram  Protocol
￭ Simpler protocol for transmission without any error-checking 
￭ Does not provide: reliability, flow or congestion control, timing, 

throughput guarantee, security, or connection setup
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Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram  Protocol
￭ Simpler protocol for transmission without any error-checking 
￭ Does not provide: reliability, flow or congestion control, timing, 

throughput guarantee, security, or connection setup
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The Application Layer
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Layer 1: Application

￭ Defines the following:
￭ Types of messages exchanged 

￭ E.g., requests, responses 
￭ Message syntax:

￭ Message fields, how they are delineated
￭ Message semantics:

￭ The meaning of information in each field
￭ Rules for when/how processes send/respond to messages

119



Stefan Nagy

Example: HTTP Requests
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Request line
(E.g., GET, POST, 
HEAD commands)

Header
 lines

Carriage return, 
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www.cs.utah.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Carriage return character
Line-feed character
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Example: HTTP Requests

￭ What actually gets transmitted:
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request
line

header
lines

body

method sp sp cr lfversionURL
cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~
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Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP:  File Transfer Protocol
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Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP:  File Transfer Protocol

￭ Allows for: 
￭ Interoperability
￭ Third-party security vetting
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Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP:  File Transfer Protocol

￭ Allows for: 
￭ Interoperability
￭ Third-party security vetting

￭ Closed-source proprietary protocols:
￭ Examples: Skype, Zoom
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Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP:  File Transfer Protocol

￭ Allows for: 
￭ Interoperability
￭ Third-party security vetting

￭ Closed-source proprietary protocols:
￭ Examples: Skype, Zoom
￭ Makes security vetting really difficult!
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Food for Thought

￭ Are any of the five network layers susceptible to attacks? If so, which ones?
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Next time on CS 4440…

127

Application-layer Network Attacks


