
Stefan Nagy

Week 9: Lecture B
Networking 101

Thursday, October 23, 2025

1

Stefan Nagy

Announcements

￭ Project 3: WebSec released
￭ Deadline: Thursday, November 6th by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 2 grades are now available on Canvas

￭ Statistics:
￭ Average score across all teams: 93.39%
￭ Three solved one of the extra credit targets

￭ Fantastic job!

4

Stefan Nagy

Announcements

￭ Project 2 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

5

Project 2 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 10/27 via Google Form

Stefan Nagy 6

Announcements

Stefan Nagy

Announcements

7

Stefan Nagy

Questions?

8

Stefan Nagy

Last time on CS 4440…

9

Isolation-based Web Security
HTTPS, SSL, and TLS

Stefan Nagy

￭ Confidentiality
￭ ???

￭ Integrity
￭ ???

￭ Privacy
￭ ???

10

Client-side web security should uphold…

Stefan Nagy

Client-side web security should uphold…

￭ Confidentiality
￭ My sensitive information stays private

￭ Integrity
￭ My computer and data aren’t tampered

￭ Privacy
￭ My online activities are known only to me

11

Stefan Nagy

Client-side Web Defenses

￭ Multi-process Browsing
￭ ???

12

Stefan Nagy

￭ Multi-process Browsing
￭ Each tab, plugin, etc. gets

its own unique process
￭ Leverage power of MMU to

enforce process isolation
￭ Compromised process can’t

read/write memory from
other page processes

￭ Caveat:
￭ ???

13

Client-side Web Defenses

Stefan Nagy

￭ Multi-process Browsing
￭ Each tab, plugin, etc. gets

its own unique process
￭ Leverage power of MMU to

enforce process isolation
￭ Compromised process can’t

read/write memory from
other page processes

￭ Caveat:
￭ More tabs, more plugins,

etc. creates more overhead

14

Client-side Web Defenses

Stefan Nagy

￭ Remote Pixel Streaming
￭ ???

15

Client-side Web Defenses

Stefan Nagy

￭ Remote Pixel Streaming
￭ Browser lives in the cloud,

not the client’s system
￭ Rendering done in cloud, not

on client’s system
￭ Client only gets “streamed”

version of rendered pages
￭ Thwarts client-side attacks

￭ Caveat:
￭ ???

16

Client-side Web Defenses

Stefan Nagy

￭ Remote Pixel Streaming
￭ Browser lives in the cloud,

not the client’s system
￭ Rendering done in cloud, not

on client’s system
￭ Client only gets “streamed”

version of rendered pages
￭ Thwarts client-side attacks

￭ Caveat:
￭ Consumes lots of bandwith
￭ Bulkier browsing experience

17

Client-side Web Defenses

Stefan Nagy

￭ DOM Tree Mirroring
￭ ???

18

Client-side Web Defenses

Stefan Nagy

￭ DOM Tree Mirroring
￭ Filters-out DOM elements

deemed to be unsafe
￭ User only gets “safe” DOM
￭ List of undesired elements

is defined ahead of time

￭ Caveat:
￭ ???

19

Client-side Web Defenses

Stefan Nagy

￭ DOM Tree Mirroring
￭ Filters-out DOM elements

deemed to be unsafe
￭ User only gets “safe” DOM
￭ List of undesired elements

is defined ahead of time

￭ Caveat:
￭ Need to constantly update

list of unsafe elements
￭ Must retrofit browsers

20

Client-side Web Defenses

Stefan Nagy

￭ Tagged JS Sandboxing
￭ ???

21

Client-side Web Defenses

Stefan Nagy

￭ Tagged JS Sandboxing
￭ Follow Same Origin Policy
￭ Block JavaScript access

based on site’s origin
￭ Scripts from same origin

can read/write/interact
with others from origin

￭ Scripts from different
origin denied access

￭ Caveat:
￭ ???

22

Client-side Web Defenses

Stefan Nagy

￭ Tagged JS Sandboxing
￭ Follow Same Origin Policy
￭ Block JavaScript access

based on site’s origin
￭ Scripts from same origin

can read/write/interact
with others from origin

￭ Scripts from different origin
denied access

￭ Caveat:
￭ Doesn’t stop XSS attacks

23

Client-side Web Defenses

Stefan Nagy

The Same-origin Policy

￭ Restricts access to content from the same origin (protocol + host)

24

Stefan Nagy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://cs4440.eng.utah.edu/project1

25

Candidate Request SOP Result Explanation

https://cs4440.eng.utah.edu/project3

http://cs4440.eng.utah.edu/project3/sqlinject0

ftp://cs4440.eng.utah.edu

http://www.cs4440.eng.utah.edu

https://eng.utah.edu/

The Same-origin Policy

Stefan Nagy

￭ Restricts access to content from the same origin (protocol + host)
￭ Try the following, comparing to http://cs4440.eng.utah.edu/project1

26

Candidate Request SOP Result Explanation

https://cs4440.eng.utah.edu/project3 FAIL Different protocol (https)

http://cs4440.eng.utah.edu/project3/sqlinject0 PASS Same protocol and host

ftp://cs4440.eng.utah.edu FAIL Different protocol (ftp)

http://www.cs4440.eng.utah.edu FAIL Different host (www)

https://eng.utah.edu/ FAIL Different protocol and host

The Same-origin Policy

Stefan Nagy

Secure web communication should uphold…

￭ Integrity
￭ ???

￭ Confidentiality
￭ ???

￭ Authenticity
￭ ???

27

Stefan Nagy

Secure web communication should uphold…

￭ Integrity
￭ Messages I send should not be tampered

￭ Confidentiality
￭ Messages private to only involved parties

￭ Authenticity
￭ I should know exactly who I’m talking to

28

Stefan Nagy

The TLS Handshake

29

Client Hello: Here’s Ciphers I support, and a random

Stefan Nagy

The TLS Handshake

30

Server Hello: Chosen Cipher

Certificate: Here is my Certificate with my PubKey

Here’s your random back encrypted with my PrivKey

Client Hello: Here’s Ciphers I support, and a random

Stefan Nagy

The TLS Handshake

31

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Stefan Nagy

The TLS Handshake

32

Client Hello: Here’s Ciphers I support, and a random

Server Hello: Chosen Cipher

Here’s your random back encrypted with my PrivKey

Key Exchange: Our SymKey encrypted with your PubKey

Certificate: Here is my Certificate with my PubKey

Switch to a Symmetric Cipher

Switch to a Symmetric Cipher

Stefan Nagy

Higher-level TLS Handshake

33

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Stefan Nagy

Higher-level TLS Handshake

34

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Stefan Nagy

Higher-level TLS Handshake

35

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

Stefan Nagy

Higher-level TLS Handshake

36

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

 Client says: “Great! You are who you say you are. Here’s our symmetric key.”

Stefan Nagy

Higher-level TLS Handshake

37

 Client says: “Howdy! Here is what cipher suites I support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let’s go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

 Client says: “Great! You are who you say you are. Here’s our symmetric key.”

We do not expect you to memorize
the hairy details about SSL/TLS!

Stefan Nagy 38

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate: ???

39

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate: the verifiable “proof” of the server’s authenticity
￭ The client (i.e., you) wants to know it is talking to who it believes it is
￭ Also contains the server’s public key, issuer information, expiration, etc.
￭ Your browser does lots of checks to ensure it’s dealing with a valid certificate!

40

Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm: sha1WithRSAEncryption

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate: the verifiable “proof” of the server’s authenticity
￭ The client (i.e., you) wants to know it is talking to who it believes it is
￭ Also contains the server’s public key, issuer information, expiration, etc.
￭ Your browser does lots of checks to ensure it’s dealing with a valid certificate!

41

Subject: C=US/O=Google Inc/CN=www.google.com
Issuer: C=US/O=Google Inc/CN=Google Internet Authority
Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 2010 - Jul 19 2012
Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:39:23:46

Signature Algorithm: sha1WithRSAEncryption

Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b0:3d
7c:be:b1:82:19:b9:7c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7c3:8:04:e9:1e:5d:b5

“THEY ARE WHO WE
THOUGHT THEY WERE”

- the client

“THEY ARE WHO WE
THOUGHT THEY WERE”

- the client

“THEY ARE WHO WE
THOUGHT THEY WERE”

- the client

“THEY ARE WHO WE
THOUGHT THEY WERE”

- the client

“THEY ARE WHO WE
THOUGHT THEY WERE”

- the client

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate Authority: ???

42

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate Authority: the trusted
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

43

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate Authority: the trusted
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together

44

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate Authority: the trusted
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together
￭ Links are intermediate certificates
￭ Ultimately begins in a root certificate

￭ Your browser “walks” chain to
locate certificate that it trusts

￭ Anyone can sign a certificate…
￭ But if not chained to a root

certificate, it is not valid!

45

Stefan Nagy

Our HTTPS Ecosystem

￭ Certificate Authority: the trusted
entity that vouches for certificate
￭ Acts as a notary for server’s certificate

￭ Certificates are chained together
￭ Links are intermediate certificates
￭ Ultimately begins in a root certificate

￭ Your browser “walks” chain to
locate certificate that it trusts

￭ Anyone can sign a certificate…
￭ But if not chained to a root

certificate, it is not valid!

46

Is HTTPS completely bullet-proof?

Stefan Nagy

Attacking HTTPS: via HTTP

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: ???

47

HTTPS

HTTP

Stefan Nagy

Attacking HTTPS: via HTTP

48

HTTPS

HTTP

POST /login HTTP/1.1
Host: example.com
Content-Type:
application/x-www-form-urlencoded
username=victim&password=h4ck3d

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: intercept & force HTTP
￭ Attacker intercepts & reads client requests
￭ Steal passwords of yours on that site

Stefan Nagy

Attacking HTTPS: via HTTP

49

HTTPS

HTTP

POST /login HTTP/1.1
Host: example.com
Content-Type:
application/x-www-form-urlencoded
username=victim&password=h4ck3d

￭ Browsers permitted HTTP downgrading
￭ Negotiated during connection establishment
￭ Allowed interoperability with legacy sites

￭ Attack potential: intercept & force HTTP
￭ Attacker intercepts & reads client requests
￭ Steal passwords of yours on that site

￭ Nowadays thwarted via browsers
￭ User would need to add an exception
￭ Possible through social engineering?

Modern web
browsers block
HTTP by default

Stefan Nagy

Attacking HTTPS: via HTTP

50

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: ???

HTTPS

HTTP
utah.edu

Stefan Nagy

Attacking HTTPS: via HTTP

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?

51

HTTPS

HTTP
utah.edu

Stefan Nagy 52

Stefan Nagy

Attacking HTTPS: via HTTP

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?
￭ HTTP-transmitted script is prevented from

accessing the HTTPS page’s DOM…
￭ But DOM-agnostic scripts not blocked

￭ E.g., malicious event handlers!

53

HTTPS

HTTP
utah.edu

window.onload = function()
{
 alert("PWNED SOP!");
}

Stefan Nagy

Attacking HTTPS: via HTTP

54

HTTP

HTTP
utah.edu

window.onload = function()
{
 alert("PWNED SOP!");
}

Modern web
browsers block
mixed content

￭ Attacking mixed-content sites
￭ HTTPS page loads some content via HTTP
￭ E.g., images, media, JavaScript

￭ Risks: loaded content unencrypted
￭ It can be intercepted and tampered
￭ Attacker may attempt injecting scripts

￭ Does Same-origin Policy save us?
￭ HTTP-transmitted script is prevented from

accessing the HTTPS page’s DOM…
￭ But DOM-agnostic scripts not blocked

￭ E.g., malicious event handlers!

Stefan Nagy

Attacking HTTPS: via Key Theft

55

Stefan Nagy

Attacking HTTPS: via Key Theft

￭ What can happen if…
￭ Only server’s private key stolen:

￭ ???
￭ Only client’s private key stolen:

￭ ???
￭ Both private keys are stolen:

￭ ???

56

Stefan Nagy

Attacking HTTPS: via Key Theft

￭ What can happen if…
￭ Only server’s private key stolen:

￭ Fake comms to the client!
￭ Only client’s private key stolen:

￭ Fake comms to the server!
￭ Both private keys are stolen:

￭ Full man-in-the-middle!

￭ Don’t leave your private keys
lying around on public web!

57

Stefan Nagy

Other ways to attack HTTPS?

￭ Certificate Authorities are what the security of HTTPS depends on
￭ If an attacker manages to breach a CA, they can sign any certificate they want

58

Stefan Nagy

Other ways to attack HTTPS?

￭ Certificate Authorities are what the security of HTTPS depends on
￭ If an attacker manages to breach a CA, they can sign any certificate they want

59

Result: attacker can impersonate
websites that you use—your browser
will accept their certs as legitimate!

Stefan Nagy

Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was

issued to an attacker and subsequently used
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert
in the wild… and posted it to pastebin

60

Stefan Nagy

Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was

issued to an attacker and subsequently used
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert
in the wild… and posted it to pastebin

￭ DigiNotar later admitted that dozens of
fraudulent certificates were created
￭ Google, Microsoft, Apple and Mozilla all

revoked the root Diginotar certificate
￭ Dutch Government took over Diginotar
￭ Diginotar went bankrupt and died

61

Stefan Nagy

Attacking HTTPS: via Breached CAs

￭ Real-world example: DigiNotar
￭ DigiNotar was a Dutch Certificate Authority
￭ On June 10, 2011, *.google.com cert was

issued to an attacker and subsequently used
to perform man-in-the-middle attacks in Iran

￭ Nobody noticed until someone found the cert
in the wild… and posted it to pastebin

￭ DigiNotar later admitted that dozens of
fraudulent certificates were created
￭ Google, Microsoft, Apple and Mozilla all

revoked the root Diginotar certificate
￭ Dutch Government took over Diginotar
￭ Diginotar went bankrupt and died

62

Stefan Nagy

Attacking HTTPS: Antivirus Eavesdropping

￭ Some antivirus software products
will also intercept SSL/TLS traffic
￭ Idea: install root certificate and pre-empt

client receiving server’s real certificate
￭ Why root cert?

63

Stefan Nagy

Attacking HTTPS: Antivirus Eavesdropping

￭ Some antivirus software products
will also intercept SSL/TLS traffic
￭ Idea: install root certificate and pre-empt

client receiving server’s real certificate
￭ Why root cert? Trusted by browser

￭ Intercept/decrypt both comm. directions
￭ Client → Server and Server → Client
￭ Reencrypt after scanning complete
￭ To both sides, all seems normal

￭ Not uncommon in corporate laptops

64

Stefan Nagy

Attacking HTTPS: Employer Eavesdropping

￭ Can your employer-issued laptop subvert HTTPS?

65

Stefan Nagy

Attacking HTTPS: Employer Eavesdropping

￭ Can your employer-issued laptop subvert HTTPS?
￭ No… they’re just installing their own custom root certs!
￭ They own the root certificate = they own the trust chain

66

Stefan Nagy

Questions?

67

Stefan Nagy

This time on CS 4440…

68

Introduction to Networking
The Physical, Link, Network,

Transport, and Application Layers

Stefan Nagy

What is the Internet?

69

￭ What is it?

Stefan Nagy

What is the Internet?

70

￭ What is it?
￭ How you trash-talk players in COD game lobbies
￭ How Wall Street trades shares faster than you
￭ How the CS 4440 website is distributed to you

Stefan Nagy

What really is the Internet?

￭ Connections
￭ HTTP, HTTPS, FTP, VOIP

￭ The Web
￭ Content viewed in a web browser

￭ How many internets?
￭ U.S.A. vs. China
￭ TOR vs. non-TOR

￭ What separates them?

71

Stefan Nagy

Analogy: Air Travel

￭ Each layer implements a service

72

Ticket (purchase)

Baggage (check)

Gate (load)

Runway (takeoff)

Ticket (complain)

Baggage (claim)

Gate (unload)

Runway (land)

Departure Airport Destination Airport

Routing (flying)

Stefan Nagy

The 5-layer Internet

73

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Stefan Nagy

The 5-layer Internet

74

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Applications
initiating

connections

Stefan Nagy

The 5-layer Internet

75

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Establishes
connections

Stefan Nagy

The 5-layer Internet

76

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Forms/sends
packets

between IP
addresses

Stefan Nagy

The 5-layer Internet

77

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

Creates and
sends frames

Stefan Nagy

The 5-layer Internet

78

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber
Sends the

physical bits

Stefan Nagy

The 5-layer Internet

79

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

Ethernet WiFi

Physical Layer

Fiber

The Internet

Stefan Nagy

Networking Devices

￭ Network layer:
￭ Router

￭ Connects different networks

￭ Data Link layer:
￭ Switch

￭ Connects multiple devices on
the same network

￭ Modem
￭ Aka modulator/demodulator
￭ Interface between 0/1 bits

and cable/telephone wire

80

Modem

Router

Switches

Hosts

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

81

Application
Message

App Layer

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

82

Application
Message

Segment
Data

Segment
Header

App Layer

Transport Layer

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

83

Application
Message

Segment
Data

Segment
Header

Packet
Header Packet Data

App Layer

Transport Layer

Network Layer

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

84

Application
Message

Segment
Data

Segment
Header

Packet
Header

Frame
Header

Frame
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

85

Application
Message

Segment
Data

Segment
Header

Packet
Header

Frame
Header

Frame
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

What you
care about

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

86

Application
Message

Segment
Data

Segment
Header

Packet
Header

Frame
Header

Frame
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

What really
gets sent

Stefan Nagy

Internet Packet Encapsulation

￭ How packets are generated and sent

87

Application
Message

Segment
Data

Segment
Header

Packet
Header

Frame
Header

Frame
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

What really
gets sent

Creates a
direct-connection

abstraction

Stefan Nagy

Layering of Protocols

88

SONET

TCP

IP

EthernetATM

UDP

HTTP Application Layer

Network layer

Link layer

Transport layer

SSHDNS NTPSMTPFTP

Stefan Nagy

Layering of Protocols

89

SONET

TCP

IP

EthernetATM

UDP

HTTP Application Layer

Network layer

Link layer

Transport layer

SSHDNS NTPSMTPFTP

Why do we rely on layering?

Stefan Nagy

Layering of Protocols

90

SONET

TCP

IP

EthernetATM

UDP

HTTP Application Layer

Network layer

Link layer

Transport layer

SSHDNS NTPSMTPFTP

Why do we rely on layering?

Transparency, modularization

Stefan Nagy

Questions?

91

Stefan Nagy

The Physical Layer

92

Stefan Nagy

Layer 5: The Physical Layer

￭ Last layer in the 5-layer network model
￭ The physical means of sending/receiving data

￭ Examples of physical layers?
￭ ???

93

Stefan Nagy

Layer 5: The Physical Layer

￭ Last layer in the 5-layer network model
￭ The physical means of sending/receiving data

￭ Examples of physical layers?
￭ Radio waves
￭ Telephone lines
￭ Fiber optic cables
￭ Undersea submarine cables

94

Stefan Nagy

Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes!

￭ Each member physically linked by cables

95

Stefan Nagy

Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes!

￭ Each member physically linked by cables

￭ By the 1990s: connected by Telephone lines

96

Stefan Nagy

Evolution of the Physical Layer

￭ ARPANET: precursor to today’s Internet
￭ University of Utah was one of its four nodes!

￭ Each member physically linked by cables

￭ By the 1990s: connected by Telephone lines

￭ Today: continents linked via undersea cables

97

Stefan Nagy

The Link Layer

98

Stefan Nagy

Layer 4: Link / Data-Link

￭ Hosts and switches: nodes
￭ Switches interface with hosts

￭ Channels connecting adjacent
nodes along a path: links
￭ Wired links
￭ Wireless links
￭ LANs

￭ Layer-2 packet: frame
￭ Encapsulates datagram of the

previous three TCP/IP layers

99

ISP

Stefan Nagy

MAC Addresses

￭ Most network interfaces come with a predefined MAC address
￭ 48-bit number usually represented in hex
￭ E.g., 00-1A-92-D4-BF-86

￭ The First three octets of any MAC address are IEEE-assigned
Organizationally Unique Identifiers
￭ Cisco: 00-1A-A1
￭ D-Link: 00-1B-11
￭ ASUSTek: 00-1A-92

100

Stefan Nagy

MAC Addresses

￭ Most network interfaces come with a predefined MAC address
￭ 48-bit number usually represented in hex
￭ E.g., 00-1A-92-D4-BF-86

￭ The First three octets of any MAC address are IEEE-assigned
Organizationally Unique Identifiers
￭ Cisco: 00-1A-A1
￭ D-Link: 00-1B-11
￭ ASUSTek: 00-1A-92

￭ MACs can be reconfigured by network interface driver software
￭ This makes MAC address filtering insecure—they can easily be spoofed!

101

Stefan Nagy

Ethernet

￭ The “dominant” wired LAN technology:
￭ First widely used LAN technology
￭ Simpler, cheaper than token LANs and ATM
￭ Kept up with speed race: 10 Mbps – 100 Gbps

￭ Ethernet Frame
￭ How the data is packaged up, sent/received
￭ Destination and source MACs, payload, and checksum

102

Stefan Nagy

Where is the link layer implemented?

￭ In each and every host!
￭ “Adaptor” (aka network interface card)

￭ Ethernet card
￭ 802.11 card
￭ Ethernet chipset

￭ Implements link and physical layer
￭ Attaches into host’s system buses
￭ Combination of hardware and firmware

103

Stefan Nagy

The Network Layer

104

Stefan Nagy

Layer 3: Network

￭ Deliver segment from sending to receiving hosts
￭ Sender encapsulates segments into IP datagrams
￭ Receiver delivers segments to transport layer
￭ Delivery based on logical addressing (i.e., IP addresses)

￭ Network layer protocols in every host, router
￭ Router checks headers of IP datagrams passing through

105

Stefan Nagy

Network Layer Functions

￭ Routing: determine route taken
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for

the packet to its destination

106

Stefan Nagy

Network Layer Functions

￭ Routing: determine route taken
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for

the packet to its destination

￭ Forwarding: move packets from
router’s input to router output
￭ Can’t store full IP addrs—too huge!
￭ Instead, a table based on IP prefixes

￭ Get prefix from input packet
￭ Choose its corresponding link

107

Stefan Nagy

Network Layer Functions

￭ Routing: determine route taken
by packets from source to dest
￭ Works based on IP addresses
￭ Ideally aims to find shortest path for

the packet to its destination

￭ Forwarding: move packets from
router’s input to router output
￭ Can’t store full IP addrs—too huge!
￭ Instead, a table based on IP prefixes

￭ Get prefix from input packet
￭ Choose its corresponding link

108

Stefan Nagy

Internet Protocol

￭ IP addresses: routes datagrams in Internet
￭ IPv4: 32 bit address
￭ IPv6: 128 bit address

￭ Two parts: network and host
￭ Network: used to route packets (ZIP code)
￭ Host: identifies an individual host (house number)
￭ Split between network/host based on address class
￭ Usually in dotted decimal notation: 141.211.144.212

￭ Each number represents 8 bits: 0–255

109

Stefan Nagy

IP Packets

￭ Header:
￭ Source IP address
￭ Destination IP address
￭ Lots of other information

￭ Version, length, checksum
￭ Selected transport protocol

￭ Data:
￭ The message!

￭ E.g., string of letters
￭ E.g., web page characters

110

Stefan Nagy

The Transport Layer

111

Stefan Nagy

Layer 2: Transport

￭ Provides logical communication
between application processes
running on different hosts

￭ Transport protocols in end systems
￭ Send side: breaks app messages into

segments, passes to network layer
￭ Receive side: reassembles segments

into messages, passes to app layer

￭ Nowadays, multiple transport
protocols available
￭ Internet: TCP and UDP

112

application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical

Stefan Nagy

Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded

113

Stefan Nagy

Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

114

Stefan Nagy

Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram Protocol
￭ Simpler protocol for transmission without any error-checking

115

Stefan Nagy

Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram Protocol
￭ Simpler protocol for transmission without any error-checking
￭ Does not provide: reliability, flow or congestion control, timing,

throughput guarantee, security, or connection setup

116

Stefan Nagy

Transport Services

￭ TCP: Transmission Control Protocol
￭ Flow control: sender won’t overwhelm receiver with packets
￭ Congestion control: throttle sender when network overloaded
￭ Doesn’t provide: timing, minimum throughput guarantee, security
￭ Connection-oriented: setup required between client and server

￭ UDP: User Datagram Protocol
￭ Simpler protocol for transmission without any error-checking
￭ Does not provide: reliability, flow or congestion control, timing,

throughput guarantee, security, or connection setup

117

Dependable
but costly

Speedy but
unreliable

Stefan Nagy

The Application Layer

118

Stefan Nagy

Layer 1: Application

￭ Defines the following:
￭ Types of messages exchanged

￭ E.g., requests, responses
￭ Message syntax:

￭ Message fields, how they are delineated
￭ Message semantics:

￭ The meaning of information in each field
￭ Rules for when/how processes send/respond to messages

119

Stefan Nagy

Example: HTTP Requests

120

Request line
(E.g., GET, POST,
HEAD commands)

Header
 lines

Carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www.cs.utah.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Carriage return character
Line-feed character

Stefan Nagy

Example: HTTP Requests

￭ What actually gets transmitted:

121

request
line

header
lines

body

method sp sp cr lfversionURL
cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Stefan Nagy

Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP: File Transfer Protocol

122

Stefan Nagy

Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP: File Transfer Protocol

￭ Allows for:
￭ Interoperability
￭ Third-party security vetting

123

Stefan Nagy

Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP: File Transfer Protocol

￭ Allows for:
￭ Interoperability
￭ Third-party security vetting

￭ Closed-source proprietary protocols:
￭ Examples: Skype, Zoom

124

Stefan Nagy

Protocols Galore

￭ Many open-source protocols we use daily
￭ Examples:

￭ HTTP: Hypertext Transfer Protocol
￭ SMTP: Simple Mail Transfer Protocol
￭ FTP: File Transfer Protocol

￭ Allows for:
￭ Interoperability
￭ Third-party security vetting

￭ Closed-source proprietary protocols:
￭ Examples: Skype, Zoom
￭ Makes security vetting really difficult!

125

Stefan Nagy

Food for Thought

￭ Are any of the five network layers susceptible to attacks? If so, which ones?

126

Application
Message

Segment
Data

Segment
Header

Packet
Header

Frame
Header

Frame
Footer

Packet Data

Frame Data

App Layer

Transport Layer

Network Layer

Link Layer

Stefan Nagy

Next time on CS 4440…

127

Application-layer Network Attacks

