
Stefan Nagy

Week 8: Lecture B
Web Attacks

Thursday, October 16, 2025

1

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: tonight by 11:59PM

2

Stefan Nagy

Announcements

￭ Project 3: WebSec released
￭ Deadline: Thursday, November 6th by 11:59PM

3

Stefan Nagy

Announcements

4

Stefan Nagy

Announcements

5

Stefan Nagy 6

Announcements

Stefan Nagy

Announcements

7

Stefan Nagy

Announcements

8

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

9

Stefan Nagy

Last time on CS 4440…

10

Intro to the Web Platform
HTTP

Cookies
Javascript

Stefan Nagy

What is the Web?

￭ What is it?
￭ A venue for me to ridicule Broncos fans
￭ A place to view (and share) pictures of seals
￭ The location where I host the CS 4440 website

11

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ ???
￭ ???

12

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ Requests a resource
￭ Renders it for the user

13

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ Requests a resource
￭ Renders it for the user

￭ Web Application (the server side)
￭ ???
￭ ???

14

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ Requests a resource
￭ Renders it for the user

￭ Web Application (the server side)
￭ Transmits resource to the client
￭ Interfaces with the client

￭ Session cookies to keep “state”
￭ Dynamic content (e.g., JavaScript)

15

Stefan Nagy

Stateless vs. Stateful Communication

￭ Stateless

￭ Stateful

16

??
?

??
?

Stefan Nagy

Stateless vs. Stateful Communication

￭ Stateless

￭ Stateful

17

?

?

Stefan Nagy

HyperText Markup Language (HTML)

￭ Describes content and formatting of web pages
￭ Rendered within browser window

￭ HTML features
￭ Static document description language
￭ Links to external pages, images by reference
￭ User input sent to server via forms

￭ HTML extensions
￭ Additional media (e.g., PDF, videos) via plugins
￭ Embedding programs in other languages (e.g., Java)

provides dynamic content that can:
￭ Interacts with the user
￭ Modify the browser user interface
￭ Access the client computer environment

18

Stefan Nagy

Uniform Resource Locator (URL)

￭ Reference to a web resource (e.g., a website)
￭ Specifies its location on a computer network
￭ Specifies the mechanism for retrieving it

￭ Example: http://www.cs.utah.edu/class?name=cs4440#homework
￭ Protocol: How to retrieve the web resource

￭ Path: Identifies the specific resource to access (case insensitive)

￭ Query: Assigns values to specified parameters (case sensitive)

￭ Fragment: Location of a resource subordinate to another

19

Stefan Nagy

Uniform Resource Locator (URL)

￭ Reference to a web resource (e.g., a website)
￭ Specifies its location on a computer network
￭ Specifies the mechanism for retrieving it

￭ Example: http://www.cs.utah.edu/class?name=cs4440#homework
￭ Protocol: How to retrieve the web resource

￭ HTTP
￭ Path: Identifies the specific resource to access (case insensitive)

￭ www.cs.utah.edu/class
￭ Query: Assigns values to specified parameters (case sensitive)

￭ name=cs4440
￭ Fragment: Location of a resource subordinate to another

￭ #homework

20

Stefan Nagy

HTTP Requests

￭ What type of HTTP request is this?

21

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="l33th4x" type="hidden"/>

</form>

Stefan Nagy 22

Stefan Nagy

HTTP Requests

￭ What type of HTTP request is this? POST

￭ What about this?

23

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="l33th4x" type="hidden"/>

</form>

http://cs4440.eng.utah.edu/project3/search?q=Test

Stefan Nagy

HTTP Requests

￭ What type of HTTP request is this? POST

￭ What about this? GET

24

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="l33th4x" type="hidden"/>

</form>

http://cs4440.eng.utah.edu/project3/search?q=Test

Stefan Nagy

HTTP Cookies

￭ Small chunks of info stored on a computer associated with a specific server
￭ When you access a website, it might store information as a cookie
￭ Every time you visit that server, the cookie is re-sent to the server
￭ Effectively used to hold state information over multiple sessions

25

Stefan Nagy

HTTP Cookies

￭ Cookies are stored on your computer and can be controlled or manipulated
￭ Many sites require that you enable cookies to access the site’s full capabilities
￭ Their storage on your computer naturally lends itself to cookie exploitation

26

Stefan Nagy

JavaScript

￭ A powerful, popular web programming language
￭ Scripts embedded in web pages returned by web server
￭ Scripts executed by browser (client-side scripting). Can:

￭ Alter contents of a web page
￭ Track events (mouse clicks, motion, keystrokes)
￭ Read/set cookies
￭ Issue web requests and read replies

27

Stefan Nagy

￭ Code enclosed within <script> tags

￭ Defining functions

￭ Event handlers embedded in HTML

￭ Built-in functions can change content of a window: click-jacking attack

<a onMouseUp="window.open(‘http://www.evilsite.com’)"
href="http://www.trustedsite.com/">Trust me!?

Embedding JavaScript within HTML

28

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

<img src="picture.gif"
onMouseOver="javascript:hello()">

Stefan Nagy

Document Object Model (DOM Tree)

￭ Platform- and language-neutral interface
￭ Allows programs and scripts to dynamically

access/update document content, structure, style

￭ Backbone of modern web browser plugins

￭ You can access and update the DOM Tree
yourself via browser’s web developer tools

29

Stefan Nagy

Web Databases

￭ Databases: how we store
data on the server-side
￭ Data stored by server
￭ Data queried by client
￭ Query executed by server

￭ A massive component of
modern web applications
￭ Examples: record keeping,

user account management

￭ Popular DB Software:
￭ MySQL, PostgreSQL
￭ Redis, MongoDB

30

query

result

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions
￭ Information stored in tables; columns = attributes, rows = records

￭ Fundamental operations:
￭ “SELECT” : express queries
￭ “INSERT” : create new records
￭ “UPDATE” : modify existing data
￭ “DELETE” : delete existing records
￭ “UNION” : combine results of multiple queries
￭ “WHERE/AND/OR” : conditional operations

￭ Syntactical Tips:
￭ “*” : all
￭ “NULL” : nothing
￭ “-- ” : comment-out the rest of the line (note the space at the end)

31

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

￭ E.g., Is there a user with username “bob” and password “abc123”?
￭ “SELECT * FROM 'users' WHERE username='bob' AND password='abc123'”

￭ E.g., Completely delete this table!
￭ “DROP TABLE 'users'”

32

Stefan Nagy

Example DB and SQL Queries

￭ Table name: users

￭ SELECT * FROM users WHERE passHash = 0x87654321;
￭ ???

￭ SELECT * FROM users WHERE id = 1;
￭ ???

￭ SELECT password FROM users WHERE username = “Below Average”;
￭ ???

33

ID username password passHash location

1 Prof Nagy c4ntgu3$$m3! 0x12345678 Salt Lake, UT

2 Average User password123 0x87654321 Boulder, CO

3 Below Average password 0x81726354 Denver, CO

Stefan Nagy

Example DB and SQL Queries

￭ Table name: users

￭ SELECT * FROM users WHERE passHash = 0x87654321;
￭ Will return Average User

￭ SELECT * FROM users WHERE id = 1;
￭ Will return just Prof Nagy

￭ SELECT password FROM users WHERE username = “Below Average”;
￭ Will return Below Average’s password

34

ID username password passHash location

1 Prof Nagy c4ntgu3$$m3! 0x12345678 Salt Lake, UT

2 Average User password123 0x87654321 Boulder, CO

3 Below Average password 0x81726354 Denver, CO

Stefan Nagy

Questions?

35

Stefan Nagy

This time on CS 4440…

36

Web Attacks
SQL Injection

Cross-site Scripting
Cross-site Request Forgery

Project 3 Tips

Stefan Nagy

Food for Thought

￭ SQL databases and other web applications operate on users’ inputs
￭ E.g., SQL queries, HTTP GET and POST requests
￭ That’s how we interact with their server-side applications!

￭ Question: can we assume that all user input will only ever be data?

37

Stefan Nagy

Web Applications

38

GET /?path=/home/user/ HTTP/1.1

Stefan Nagy

Web Applications

39

GET /?path=/home/user/ HTTP/1.1

<?php
echo system(“ls $_GET[‘path’]”);

?>

Stefan Nagy

Web Applications

40

<?php
echo system(“ls $_GET[‘path’]”);

?>

GET /?path=/home/user/ HTTP/1.1

HTTP/1.1 200 OK
...
Desktop
Documents
Music
Pictures

Stefan Nagy

Web Applications

41

GET /?path=$(rm –rf /) HTTP/1.1

Stefan Nagy

Web Applications

42

GET /?path=$(rm –rf /) HTTP/1.1

<?php
echo system(“ls $_GET[‘path’]”);

?>

Stefan Nagy

Web Applications

43

GET /?path=$(rm –rf /) HTTP/1.1

<?php
echo system(“ls $(rm –rf /)”);

?>

<?php
echo system(“ls $_GET[‘path’]”);

?>

Stefan Nagy

Web Applications

44

GET /?path=$(rm –rf /) HTTP/1.1

<?php
echo system(“ls $(rm –rf /)”);

?>

<?php
echo system(“ls $_GET[‘path’]”);

?>What is the fatal flaw here?

Confusing input data with code!

Stefan Nagy

Code Injection

￭ Confusing data with code
￭ Programmer expected user would only send data
￭ Instead, got (and unintentionally executed) code

￭ A common and dangerous class of attacks
￭ Shell Injection
￭ SQL Injection
￭ Cross-Site Scripting
￭ Control-flow Hijacking (buffer overflows)

45

GET /?path=$(rm –rf /) HTTP/1.1

Stefan Nagy

SQL Injection

46

Stefan Nagy

Recap: SQL Queries

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

￭ E.g., Is there a user with username “bob” and password “abc123”?
￭ “SELECT * FROM 'users' WHERE username='bob' AND password='abc123'”

￭ E.g., Completely delete this table!
￭ “DROP TABLE 'users'”

47

Stefan Nagy

Recap: Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM `users` WHERE location=‘Salt Lake City’”

￭ E.g., Is there a user with username “bob” and password “abc123”?
￭ “SELECT * FROM `users` WHERE username=‘bob’ AND password=‘abc123’”

￭ E.g., Completely delete this table!
￭ “DROP TABLE `users`”

48

Stefan Nagy

SQL Injection Attacks

￭ Target: web server hosting a SQL database
￭ One of the most popular database languages today

49

Stefan Nagy

SQL Injection Attacks

￭ Target: web server hosting a SQL database
￭ One of the most popular database languages today

￭ Attacker goal: inject or modify database

commands to read or alter database info

50

Stefan Nagy

SQL Injection Attacks

￭ Target: web server hosting a SQL database
￭ One of the most popular database languages today

￭ Attacker goal: inject or modify database

commands to read or alter database info

￭ Attacker tools: ability to send requests to
web server (e.g., via an ordinary browser)

51

Stefan Nagy

SQL Injection Attacks

￭ Target: web server hosting a SQL database
￭ One of the most popular database languages today

￭ Attacker goal: inject or modify database

commands to read or alter database info

￭ Attacker tools: ability to send requests to
web server (e.g., via an ordinary browser)

￭ Key trick: web server allows characters in
attacker’s input to be interpreted as SQL
control elements (rather than just as data)

52

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $id:

￭ What can an attacker do?

53

A Simple Command Injection

SELECT * FROM users WHERE id = $id;

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $id:

￭ What can an attacker do?
￭ $id = NULL UNION SELECT * FROM users

￭ Effect upon execution?

54

A Simple Command Injection

SELECT * FROM users WHERE id = $id;

Stefan Nagy 55

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $id:

￭ What can an attacker do?
￭ $id = NULL UNION SELECT * FROM users

￭ Effect upon execution?

￭ Will return the full list of users in the database!

56

A Simple Command Injection

SELECT * FROM users WHERE id = $id;

SELECT * FROM users WHERE id =
NULL UNION SELECT * FROM users;

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $name and $ssn:

￭ What can an attacker do?

57

Abusing Comment Encoding

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $name and $ssn:

￭ What can an attacker do?
￭ $name = “'StefanNagy'“
￭ $ssn = ??????????????

58

Abusing Comment Encoding

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $name and $ssn:

￭ What can an attacker do?
￭ $name = “'StefanNagy' -- “
￭ String “ -- “ is MySQL code-comment syntax

￭ Effect upon execution?

59

Abusing Comment Encoding

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $name and $ssn:

￭ What can an attacker do?
￭ $name = “'StefanNagy' -- “
￭ String “ -- “ is MySQL code-comment syntax

￭ Effect upon execution?

￭ Can be leveraged to discard remaining clauses of the query

60

Abusing Comment Encoding

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

SELECT * FROM faculty WHERE name =
'StefanNagy' -- AND ssn = $ssn;

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ How can we bypass the single-quotes?

61

Bypassing String Escaping

SELECT * FROM users WHERE location='$city';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ How can we bypass the single-quotes?
￭ $city = SLC'; DELETE FROM users WHERE 1='1
￭ We add two single-quotes: one after city name, the other near query end

￭ Effect on the query?

62

Bypassing String Escaping

SELECT * FROM users WHERE location='$city';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ How can we bypass the single-quotes?
￭ $city = SLC'; DELETE FROM users WHERE 1='1
￭ We add two single-quotes: one after city name, the other near query end

￭ Effect on the query?

￭ Our two quotation marks will “escape” (i.e., close-out) the city name
￭ In this scenario, escaping allows us to modify the query with additional logic

63

Bypassing String Escaping

SELECT * FROM users WHERE location='$city';

SELECT * FROM users WHERE location = 'SLC';
DELETE FROM users WHERE 1='1';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything' = '
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

64

Abusing String Arithmetic

SELECT * FROM users WHERE location='$city';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything' = '
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

65

Abusing String Arithmetic

SELECT * FROM users WHERE location='$city';

SELECT * FROM users WHERE location =
'anything' = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything' = '
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

66

Abusing String Arithmetic

SELECT * FROM users WHERE location='$city';

SELECT * FROM users WHERE location =
'anything' = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

67

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

WHERE location = 'anything' = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

68

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

WHERE location = 'anything' = '';

FALSE(str) location == (str) 'anything'

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

69

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

WHERE location = 'anything' FALSE = '';

FALSE(str) location == (str) 'anything'

FALSE == ''

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

70

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

FALSE(str) location == (str) 'anything'

Type
Mismatch!(bool) FALSE == (str) ''

WHERE location = 'anything' FALSE = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

71

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

FALSE(str) location == (str) 'anything'

(bool) FALSE == (str) ''

(int) FALSE == (int) ''

Type
Mismatch!

WHERE location = 'anything' FALSE = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

72

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

FALSE(str) location == (str) 'anything'

(bool) FALSE == (str) ''

(int) FALSE 0 == (int) '' 0

Type
Mismatch!

TRUE

WHERE location = 'anything' FALSE = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

73

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

FALSE(str) location == (str) 'anything'

(bool) FALSE == (str) ''

(int) FALSE 0 == (int) '' 0

Type
Mismatch!

TRUE

WHERE location = 'anything' FALSE = '';

Stefan Nagy

￭ Consider an SQL query where the attacker chooses $city:

￭ What can an attacker do?
￭ $city = anything’ = ‘
￭ The second quote creates an empty string on the right-hand side

￭ Effect on the query?

￭ The query statement will always evaluate to TRUE
￭ Forcing a true statement will force the entire query to be true

74

Abusing String Arithmetic

SELECT * FROM users WHERE location=‘$city’;

SELECT * FROM users WHERE location =
‘anything’ = ‘’;

FALSE(str) location == (str) 'anything'

(bool) FALSE == (str) ''

(int) FALSE 0 == (int) '' 0

Type
Mismatch!

TRUE

WHERE location = 'anything' FALSE = '';

How can we defend against SQL attacks?

Stefan Nagy

￭ Input Sanitization: identify and escape non-data input
￭ Escaping = to handle differently
￭ Usually just cut-out that part

￭ Common escaping targets:
￭ SQL control characters (quotes, comments, etc.)
￭ SQL command keywords (DELETE, WHERE, FROM, etc.)

￭ Result: attack query interpreted as garbage—and fails!

75

Preventing SQL Injection

Stefan Nagy

￭ Example: escaping single quotes

76

SELECT * FROM users WHERE name='$username'

SELECT * FROM users WHERE name=''OR'1==1'

SELECT * FROM users WHERE name='\'OR\'1==1'

Preventing SQL Injection

Stefan Nagy

￭ Example: escaping single quotes

77

SELECT * FROM users WHERE name=’$username’

SELECT * FROM users WHERE name=’’OR’1==1’

SELECT * FROM users WHERE name=’\’OR\’1==1’

No entry with a name of
“\'OR\'1==” was found.

Preventing SQL Injection

Stefan Nagy

￭ Prepared Statements: “pin” data elements
￭ Declares what parts of the query are data prior

to the user’s input making its way into the query

￭ Example:

78

$st = $db->prepare("SELECT * FROM users WHERE name=?");
$stmt->bind_param(“s”, $username);
$stmt->execute();

$username=''OR'1==1'

Preventing SQL Injection

Stefan Nagy

￭ Prepared Statements: “pin” data elements
￭ Declares what parts of the query are data prior

to the user’s input making its way into the query

￭ Example:

79

Preventing SQL Injection

$st = $db->prepare("SELECT * FROM users WHERE name=?");
$stmt->bind_param(“s”, $username);
$stmt->execute();

$username=''OR'1==1'

No entry with a name of
“'OR'1==” was found.

Stefan Nagy

Questions?

80

Stefan Nagy

Cross-site Request Forgery (CSRF)

81

Stefan Nagy

Cookie Chaos

￭ Cookies enable ???

82

Stefan Nagy

Cookie Chaos

￭ Cookies enable persistent interaction
￭ Even after you have left the website!

￭ So, how could cookies be exploited?

83

Stefan Nagy

Cookie Chaos

￭ Cookies enable persistent interaction
￭ Even after you have left the website!

￭ So, how could cookies be exploited?

￭ An attacker-controlled website gets
you to perform an operation on a
secure site that you have a login
cookie for… without your approval!

84

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

85

POST /login?user=bob&
 pass=abc123 HTTP/1.1

Host: fellswargobank.com

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

86

POST /login?user=bob&
 pass=abc123 HTTP/1.1

Host: fellswargobank.com

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

87

POST /login?user=bob&
 pass=abc123 HTTP/1.1

Host: fellswargobank.com

HTTP/1.1 200 OK
Set-Cookie: login=fde874

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

88

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

89

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Suppose you log in to FellsWargoBank.com

90

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

HTTP/1.1 200 OK
YourBalance=$378.42

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

91

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

92

GET /transfer?to=badguy
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

93

GET /transfer?to=badguy
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK
TransferNow=$100.00

fde874
= bob

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

94

GET /transfer?to=badguy
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK
TransferNow=$100.00

fde874
= bob

Browser will automatically re-send
all cookies as part of HTTP requests

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

95

GET /transfer?to=badguy
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK
TransferNow=$100.00

fde874
= bob

Browser will automatically re-send
all cookies as part of HTTP requests

By crafting URLs, an attacker can leverage
this indirect access to “trick” the server!

Stefan Nagy

Cross-site Request Forgery (CSRF)

￭ Then, you click a sketchy link from someone that messaged you on TikTok…
￭ http://fellswargobank.com/transfer?to=badguy&amt=100

96

GET /transfer?to=badguy
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874

HTTP/1.1 200 OK
TransferNow=$100.00

fde874
= bob

Browser will automatically re-send
all cookies as part of HTTP requests

Result: command execution!

By crafting URLs, an attacker can leverage
this indirect access to “trick” the server!

Stefan Nagy

Preventing CSRF

￭ Idea: “authenticate” that user action
originates from our bank website

￭ Called the Same Origin Policy (SOP)

￭ Fundamental approach: each “action”
gets a token associated with it

￭ On a new action (page), verify that the
associated token is present and correct

￭ Token provided in the command must
match the token saved in cookie

￭ Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

97

Stefan Nagy

Preventing CSRF

￭ Idea: “authenticate” that user action
originates from our bank website

￭ Called the Same Origin Policy (SOP)

￭ Fundamental approach: each “action”
gets a token associated with it

￭ On a new action (page), verify that the
associated token is present and correct

￭ Token provided in the command must
match the token saved in cookie

￭ Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

98

HTTP/1.1 200 OK
Set-Cookie: login=fde874
 token=8d64

1

Stefan Nagy

Preventing CSRF

￭ Idea: “authenticate” that user action
originates from our bank website

￭ Called the Same Origin Policy (SOP)

￭ Fundamental approach: each “action”
gets a token associated with it

￭ On a new action (page), verify that the
associated token is present and correct

￭ Token provided in the command must
match the token saved in cookie

￭ Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

99

GET /transfer?to=Steve
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874
 token=8d64

HTTP/1.1 200 OK
Set-Cookie: login=fde874
 token=8d64

2

1

Stefan Nagy

Preventing CSRF

￭ Idea: “authenticate” that user action
originates from our bank website

￭ Called the Same Origin Policy (SOP)

￭ Fundamental approach: each “action”
gets a token associated with it

￭ On a new action (page), verify that the
associated token is present and correct

￭ Token provided in the command must
match the token saved in cookie

￭ Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

100

GET /transfer?to=Steve
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874
 token=8d64

HTTP/1.1 200 OK
Set-Cookie: login=fde874
 token=8d64

fde874
= bob

3

2

1

Stefan Nagy

Preventing CSRF

￭ Idea: “authenticate” that user action
originates from our bank website

￭ Called the Same Origin Policy (SOP)

￭ Fundamental approach: each “action”
gets a token associated with it

￭ On a new action (page), verify that the
associated token is present and correct

￭ Token provided in the command must
match the token saved in cookie

￭ Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

101

GET /transfer?to=Steve
 &amt=100 HTTP/1.1
Host: bank.com
Cookie: login=fde874
 token=8d64

HTTP/1.1 200 OK
TransferNow=$100.00

HTTP/1.1 200 OK
Set-Cookie: login=fde874
 token=8d64

fde874
= bob

3

2

1

4

Stefan Nagy

Questions?

102

Stefan Nagy

Cross-site Scripting (XSS)

103

Stefan Nagy

Recap: JavaScript

￭ Rather than static HTML, pages can be expressed dynamically as programs
￭ Say, one written in JavaScript
￭ Transmitted as text, rendered by client’s browser

104

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

<img src="picture.gif"
onMouseOver="javascript:hello()">

Stefan Nagy

Cross-site Scripting (XSS)

￭ Vulnerability: lack of input sanitization on a trusted site

105

Stefan Nagy

Cross-site Scripting (XSS)

￭ Vulnerability: lack of input sanitization on a trusted site

￭ Attack: attacker submits code as data to a trusted site
￭ Later, the trusted website serves that malicious script to users
￭ Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted

for a while (e.g., an image, a form post, a malicious advertisement)
￭ Non-persistent (reflected) XSS: victim unintentionally sends malicious script to

vulnerable site, and gets malicious resulting page (generated by trusted site)

106

Stefan Nagy

Cross-site Scripting (XSS)

￭ Vulnerability: lack of input sanitization on a trusted site

￭ Attack: attacker submits code as data to a trusted site
￭ Later, the trusted website serves that malicious script to users
￭ Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted

for a while (e.g., an image, a form post, a malicious advertisement)
￭ Non-persistent (reflected) XSS: victim unintentionally sends malicious script to

vulnerable site, and gets malicious resulting page (generated by trusted site)

107

The attacker’s scripts run as if they were a part of the trusted site!

Stefan Nagy

XSS Examples

<html>
 <title> My guestbook </title>
 <body>
 All you comment belong to me!

 Alice: You make weird references

 Bob: It is supposed to be, “All your base belong to me!”

 …
 Mallory: Never mind :)
 <script>
 alert(“XSS injection”);
 </script>

</body>
</html>

108

Stefan Nagy

XSS Examples

<html>
 <title> My guestbook </title>
 <body>
 All you comment belong to me!

 Alice: You make weird references

 Bob: It is supposed to be, “All your base belong to me!”

 …
 Mallory: Never mind :)
 <script>
 alert(“XSS injection”);
 </script>

</body>
</html>

109

Every visitor’s browser will now run this code!

Stefan Nagy

XSS Examples

110

Stefan Nagy

Preventing XSS

￭ Make sure that data gets processed as data,
and not erroneously executed as code!

￭ Escape special characters!
￭ Which ones? Depends how your $data is presented

￭ Inside an HTML document? <div>$data</div>
￭ Inside a tag?
￭ Inside Javascript code? var x = “$data”;

￭ Make sure to escape every last instance!
￭ Many existing frameworks can let you declare what is

user-controlled data to automatically perform escaping on!

111

http://site.com/$data

Stefan Nagy

Summary: types of XSS

￭ XSS Goal: trick browsers into giving undue access to attacker’s JavaScript

￭ Stored XSS: attacker leaves JavaScript
lying around on a benign web service
￭ Victim visites site and browser executes it!

￭ Reflected XSS: attacker gets user to click
on specially crafted URL with script in it
￭ Service then reflects it back to victim’s browser!

￭ Heavily used by malvertising campaigns!

112

Stefan Nagy

Questions?

113

Stefan Nagy

Project 3 Tips

114

Stefan Nagy

Project 3 Overview

￭ Centered around web exploitation
￭ Help prepare you to write safer web apps!

￭ Part 1:
￭ SQL injection

￭ Parts 2–3:
￭ Basic CSRF and XSS attacks
￭ Advanced (and realistic) XSS

￭ Extra credit: 20 points

115

Stefan Nagy

The BUNGLE Website

￭ We’ve created a fictitious search engine website named BUNGLE
￭ Your job: demonstrate attacks to help this startup improve their web security

116

Stefan Nagy

Tips: SQL Injection

￭ Part 1: how will your input SQL query be represented on the server-side?
￭ Like we did in lecture today, write-out the query before your attack input

117

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

Example: before attacker input

Stefan Nagy

Tips: SQL Injection

￭ Part 1: how will your input SQL query be represented on the server-side?
￭ Like we did in lecture today, write-out the query before and after your attack input
￭ Similar exercise to stack diagrams in Project 2—what query state are you aiming for?

118

SELECT * FROM faculty WHERE name = $name AND ssn = $ssn

SELECT * FROM faculty WHERE name =
'StefanNagy' -- AND ssn = $ssn;

Example: before attacker input

Example: desired query state

Stefan Nagy

Tips: CSRF and XSS

￭ Parts 2–3: what interface are you targeting, and what request does it take?
￭ Read BUNGLE’s documentation! https://cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

119

https://users.cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

Stefan Nagy

Tips: CSRF and XSS

￭ Parts 2–3: familiarize yourself with the browser’s DOM tree and dev tools

120

Stefan Nagy

Tips: CSRF and XSS

￭ Parts 2–3: we give you a skeleton
attack template—you’ll fill it out

￭ Part 2: your attacks will be slightly
modified versions of this skeleton

￭ Part 3: first craft your attacks atop
the template, then try to construct
them in their URL-only attack form

121

Stefan Nagy

Tips: CSRF and XSS

￭ Work in a text editor of your choice
￭ Construct your attacks step-by-step there
￭ Then open and test them within VM’s Firefox
￭ Debug via browser console, alert boxes, etc.

￭ Part 2 deliverables are HTML files

￭ Part 3 deliverables are URLs
￭ Suggestion: master first as HTML files, then

convert them to their URL-only attack form

122

Stefan Nagy

Questions?

123

Stefan Nagy

Next time on CS 4440…

124

SSL/TLS, certificates, HTTPS attacks and defenses

