
Stefan Nagy

Week 8: Lecture A
Introduction to The Web

Tuesday, October 14, 2025

1

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: this Thursday by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 3: WebSec released
￭ Deadline: Thursday, November 6th by 11:59PM

4

Stefan Nagy

Announcements

5

Stefan Nagy

Announcements

6

Stefan Nagy 7

Announcements

Stefan Nagy

Announcements

8

Stefan Nagy

Announcements

9

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

10

Stefan Nagy

Last time on CS 4440…

11

Malware
Today’s Malware “Zoo”

Malware Detection and Prevention

Stefan Nagy

Malware: Malicious Software

￭ Definition: ???

12

Stefan Nagy

Malware: Malicious Software

￭ Definition: software (more generally, a set of instructions) that runs on a
computer it doesn’t have access to and/or does something nefarious

￭ Goals of Malware: ???

13

Stefan Nagy

Malware: Malicious Software

￭ Definition: software (more generally, a set of instructions) that runs on a
computer it doesn’t have access to and/or does something nefarious

￭ Goals of Malware:
￭ Steal private data
￭ Display ads, send spam
￭ Damage local machine
￭ Congest a network
￭ Attack other systems on the network
￭ Commit online fraud
￭ Gain, then grant, unauthorized access
￭ Up to the attacker(s) really…

14

Stefan Nagy

Malware Infection

￭ How does malicious software get on victim computers in the first place?

15

Stefan Nagy

Malware Infection

￭ How does malicious software get on victim computers in the first place?

16

Start addr of buffer

Padding to RetAddr

setuid(0) +
execve(“/bin/sh”)

$ wget malware.zip
$ unzip malware.zip
$./malware.bin

Stefan Nagy

Summary: Major Malware Types

￭ Virus
￭ ???

17

Stefan Nagy

Summary: Major Malware Types

￭ Virus
￭ Self-replicating software that infects other programs, mutates itself to avoid detection

18

Stefan Nagy

Summary: Major Malware Types

￭ Worm
￭ ???

19

Stefan Nagy

Summary: Major Malware Types

￭ Worm
￭ Self-replicating software that spreads over networks to infect programs on other systems

20

Stefan Nagy

Summary: Major Malware Types

￭ Trojans
￭ ???

21

Stefan Nagy

Summary: Major Malware Types

￭ Trojans
￭ Appears to perform desirable function, but does something malicious behind the scenes

22

Stefan Nagy

Summary: Major Malware Types

￭ Adware
￭ ???

23

Stefan Nagy

Summary: Major Malware Types

￭ Adware
￭ Software that incessantly displays advertisements; often bundled with other malware

24

Stefan Nagy

Summary: Major Malware Types

￭ Spyware
￭ ???

25

Stefan Nagy

Summary: Major Malware Types

￭ Spyware
￭ Software that tracks, collects, and exfiltrates sensitive user information

26

Stefan Nagy

Summary: Major Malware Types

￭ Rootkit
￭ ???

27

Stefan Nagy

Summary: Major Malware Types

￭ Rootkit
￭ Malware that uses stealth to achieve persistent, privileged control over a victim machine

28

Stefan Nagy

Summary: Major Malware Types

￭ Botnet
￭ ???

29

Stefan Nagy

Summary: Major Malware Types

￭ Botnet
￭ A network of compromised “zombie” or “bot” computers that do a botmaster’s bidding

30

Stefan Nagy

Summary: Major Malware Types

￭ Advanced Persistent Threat
￭ ???

31

Stefan Nagy

Summary: Major Malware Types

￭ Advanced Persistent Threat
￭ Combined threats, usually targeting a specific entity; extremely sophisticated and stealthy

32

Stefan Nagy

Detection

￭ Anti-virus software
￭ Software for detecting, eliminate malware
￭ E.g., Malwarebytes, Avast, McAfee, Symantec

￭ Signature-based anti-virus:
￭ ???

￭ Heuristic-based anti-virus:
￭ ???

33

Stefan Nagy

Detection

￭ Anti-virus software
￭ Software for detecting, eliminate malware
￭ E.g., Malwarebytes, Avast, McAfee, Symantec

￭ Signature-based anti-virus:
￭ Track identifying strings (like a fingerprint)
￭ Difficult against mutating viruses

￭ Heuristic-based anti-virus:
￭ Analyze program behavior, identify unusual patterns
￭ E.g. network access, file deletion, modify boot sector

34

Stefan Nagy

Other Defenses

￭ Tripwired Hashes
￭ Keep hash of known system files
￭ Periodically re-hash and check

￭ If hash changes, file tampered

￭ Be a security-conscious citizen
￭ Strong passwords, 2-factor authentication
￭ Do not access suspicious files or websites

￭ Use your intuition: if it seems too
good to be true, it probably is!

￭ Keep software updated and use anti-virus
￭ Teach others!

35

Stefan Nagy

Questions?

36

Stefan Nagy

This time on CS 4440…

37

The Web
HTML & HTTP
HTTP Cookies

JavaScript
SQL

Stefan Nagy

The Web

38

Stefan Nagy

What is the Web?

￭ What is it?

39

Stefan Nagy

What is the Web?

￭ What is it?
￭ A venue for me to ridicule Broncos fans
￭ A place to view (and share) pictures of seals
￭ The location where I host the CS 4440 website

40

Stefan Nagy

What is the Web?

￭ What really is it?

41

Stefan Nagy

What is the Web?

￭ What really is it?
￭ A platform for deploying applications, portably and securely

42

Stefan Nagy

A Historical Perspective

￭ The web is an example of bolt-on security
￭ Originally invented to allow physicists to share their

research papers
￭ Only textual web pages, with links to other pages;

no security model

43

Stefan Nagy

A Historical Perspective

￭ The web is an example of bolt-on security
￭ Originally invented to allow physicists to share their

research papers
￭ Only textual web pages, with links to other pages;

no security model

￭ Then we added embedded media (e.g., images)
￭ Crucial decision: a page can embed images loaded

from another web server
￭ Then, Javascript, dynamic HTML, AJAX, CSS, frames,

audio, video, and others!

44

Stefan Nagy

A Historical Perspective

￭ The web is an example of bolt-on security
￭ Originally invented to allow physicists to share their

research papers
￭ Only textual web pages, with links to other pages;

no security model

￭ Then we added embedded media (e.g., images)
￭ Crucial decision: a page can embed images loaded

from another web server
￭ Then, Javascript, dynamic HTML, AJAX, CSS, frames,

audio, video, and others!

￭ Today, a website is a distributed application

45

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ Attacks targeting browser security weaknesses cause:

￭ Malware installation (e.g., keyloggers, rootkits)
￭ Theft of sensitive data (e.g., files, passwords)

46

Stefan Nagy

Web Security: Two Tales

￭ Web Browser (the client side)
￭ Attacks targeting browser security weaknesses cause:

￭ Malware installation (e.g., keyloggers, rootkits)
￭ Theft of sensitive data (e.g., files, passwords)

￭ Web Application (the server side)
￭ Runs on the site (e.g., e-commerce, blogs)
￭ Written in PHP, ASP, JSP, Ruby, etc.
￭ Many attacks:

￭ Cross-site Scripting
￭ Cross-site Request Forgery
￭ SQL Injection

47

Stefan Nagy

Questions?

48

Stefan Nagy

HTML and HTTP

49

Stefan Nagy

HTML and HTTP

￭ What are HTML and HTTP?
￭ HTML = how we represent content
￭ HTTP = how we transfer content

￭ Key components of the Web
￭ Both developed in early 1990s
￭ HTTP is mostly unchanged
￭ HTML still evolving (albeit slowly)

50

Stefan Nagy

HTML and HTTP

￭ What are HTML and HTTP?
￭ HTML = how we represent content
￭ HTTP = how we transfer content

￭ Key components of the Web
￭ Both developed in early 1990s
￭ HTTP is mostly unchanged
￭ HTML constantly evolving

51

Web Browser Web Server

Response (HTML)

Request (URL)

Protocol (HTTP)

Stefan Nagy

HyperText Markup Language (HTML)

￭ Describes content and formatting of web pages
￭ Rendered within browser window

￭ HTML features
￭ Static document description language
￭ Links to external pages, images by reference
￭ User input sent to server via forms

52

Stefan Nagy

HyperText Markup Language (HTML)

￭ Describes content and formatting of web pages
￭ Rendered within browser window

￭ HTML features
￭ Static document description language
￭ Links to external pages, images by reference
￭ User input sent to server via forms

￭ HTML extensions
￭ Additional media (e.g., PDF, videos) via plugins
￭ Embedding programs in other languages (e.g., Java)

provides dynamic content that can:
￭ Interacts with the user
￭ Modify the browser user interface
￭ Access the client computer environment

53

Stefan Nagy

HyperText Transfer Protocol (HTTP)

54

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted

Stefan Nagy

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted

HyperText Transfer Protocol (HTTP)

55

Stefan Nagy

HyperText Transfer Protocol (HTTP)

56

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted
￭ Stateless

Stefan Nagy

HyperText Transfer Protocol (HTTP)

￭ Protocol for transmitting hypermedia documents (e.g., web pages)
￭ Widely used
￭ Simple
￭ Unencrypted
￭ Stateless

57

Stefan Nagy

Uniform Resource Locator (URL)

￭ Reference to a web resource (e.g., a website)
￭ Specifies its location on a computer network
￭ Specifies the mechanism for retrieving it

￭ Example: http://www.cs.utah.edu/class?name=cs4440#homework
￭ Protocol: How to retrieve the web resource

￭ Path: Identifies the specific resource to access (case insensitive)

￭ Query: Assigns values to specified parameters (case sensitive)

￭ Fragment: Location of a resource subordinate to another

58

Stefan Nagy

Uniform Resource Locator (URL)

￭ Reference to a web resource (e.g., a website)
￭ Specifies its location on a computer network
￭ Specifies the mechanism for retrieving it

￭ Example: http://www.cs.utah.edu/class?name=cs4440#homework
￭ Protocol: How to retrieve the web resource

￭ HTTP
￭ Path: Identifies the specific resource to access (case insensitive)

￭ www.cs.utah.edu/class
￭ Query: Assigns values to specified parameters (case sensitive)

￭ name=cs4440
￭ Fragment: Location of a resource subordinate to another

￭ #homework

59

Stefan Nagy

HTTP Requests

￭ Browser (client):
1. Open connection
2. Client sends request
3. Server obtains resource
4. Server responds (stateless!)
5. Display and close connection

60

Stefan Nagy

HTTP Requests

￭ Browser (client):
1. Open connection
2. Client sends request
3. Server obtains resource
4. Server responds (stateless!)
5. Display and close connection

￭ Server Responses:
￭ “200 OK”
￭ “304 Document moved”
￭ “404 Not found”
￭ “400 Bad request”

61

Stefan Nagy

HTTP Requests

￭ Two types of HTTP requests: GET and POST
￭ GET requests: set within the request’s URL

￭ What does this example request do?

62

http://cs4440.eng.utah.edu/project3/search?q=Test

Stefan Nagy

HTTP Requests

￭ Two types of HTTP requests: GET and POST
￭ GET requests: set within the request’s URL

￭ What does this example request do?
￭ Sets parameter q to value Test for interface search

63

http://cs4440.eng.utah.edu/project3/search?q=Test

Stefan Nagy

HTTP Requests

￭ Two types of HTTP requests: GET and POST
￭ POST requests: parameters within request body

￭ What does this example request do?

64

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="l33th4x" type="hidden"/>

</form>

Stefan Nagy

HTTP Requests

￭ Two types of HTTP requests: GET and POST
￭ POST requests: parameters within request body

￭ What does this example request do?
￭ Sets username to value attacker (and type hidden) for interface login
￭ Sets password to value l33th4x (and type hidden) for interface login

65

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="l33th4x" type="hidden"/>

</form>

Stefan Nagy

Questions?

66

Stefan Nagy

Cookies

67

Stefan Nagy

Supporting Stateful Connections

￭ Stateless connection is impractical—why?

68

Stefan Nagy

Supporting Stateful Connections

￭ Stateless connection is impractical—why?
￭ Performance: cost of re-transmitting redundant info
￭ Convenience: user must perform same redundant tasks

69

Stefan Nagy

HTTP Cookies

￭ Small chunks of info stored on a computer associated with a specific server
￭ When you access a website, it might store information as a cookie
￭ Every time you visit that server, the cookie is re-sent to the server
￭ Effectively used to hold state information over multiple sessions

70

Stefan Nagy

HTTP Cookies

￭ Cookies expire!
￭ Date is chosen by server (e.g., January 1st, 2036)
￭ Thus, any cookies will stick around for a while!

71

Stefan Nagy

HTTP Cookies

￭ Cookies expire!
￭ Date is chosen by server (e.g., January 1st, 2036)
￭ Thus, any cookies will stick around for a while!

￭ Every large website that you use today
makes use of cookies in some form
￭ “Necessary” cookies

￭ Core functionality like security, accessibility
￭ “Analytics” cookies

￭ Used to collect data about your browsing, or
to display you targeted advertisements

72

Stefan Nagy

HTTP Cookies

￭ Cookies can hold any type of information—including sensitive information
￭ Passwords, credit card information, social security numbers, etc.
￭ Session cookies, non-persistent cookies, persistent cookies

73

Stefan Nagy

HTTP Cookies

￭ Cookies are stored on your computer and can be controlled or manipulated
￭ Many sites require that you enable cookies to access the site’s full capabilities
￭ Their storage on your computer naturally lends itself to cookie exploitation

74

Stefan Nagy

HTTP Cookies

￭ You can (and probably should)
clear your cookies regularly
￭ Most browsers nowadays have

mechanisms to disable cookies
￭ You can also choose to accept or

exclude cookies from certain sites

75

Stefan Nagy

Questions?

76

Stefan Nagy

JavaScript

77

Stefan Nagy

From Web 1.0 to Web 2.0

￭ Recall that HTML is a static language
￭ Pages are rendered only once
￭ Ideal for non-interactive content

￭ E.g., “About Us”, “Contact Us”, etc.

78

Stefan Nagy

From Web 1.0 to Web 2.0

￭ Recall that HTML is a static language
￭ Pages are rendered only once
￭ Ideal for non-interactive content

￭ E.g., “About Us”, “Contact Us”, etc.

￭ Since Web 1.0, we’ve evolved to now
express web pages as programs
￭ Enables richer, more interactive content

79

Stefan Nagy

From Web 1.0 to Web 2.0

￭ Recall that HTML is a static language
￭ Pages are rendered only once
￭ Ideal for non-interactive content

￭ E.g., “About Us”, “Contact Us”, etc.

￭ Since Web 1.0, we’ve evolved to now
express web pages as programs
￭ Enables richer, more interactive content
￭ E.g., the JavaScript language

80

Stefan Nagy

JavaScript

￭ A powerful, popular web programming language
￭ Scripts embedded in web pages returned by web server
￭ Scripts executed by browser (client-side scripting). Can:

￭ Alter contents of a web page
￭ Track events (mouse clicks, motion, keystrokes)
￭ Read/set cookies
￭ Issue web requests and read replies

￭ Note: despite the name, has nothing to do with Java!

81

Stefan Nagy 82

Stefan Nagy

JavaScript

￭ A powerful, popular web programming language
￭ Scripts embedded in web pages returned by web server
￭ Scripts executed by browser (client-side scripting). Can:

￭ Alter contents of a web page
￭ Track events (mouse clicks, motion, keystrokes)
￭ Read/set cookies
￭ Issue web requests and read replies

￭ Note: despite the name, has nothing to do with Java!

83

Stefan Nagy

JavaScript

￭ A powerful, popular web programming language
￭ Scripts embedded in web pages returned by web server
￭ Scripts executed by browser (client-side scripting). Can:

￭ Alter contents of a web page
￭ Track events (mouse clicks, motion, keystrokes)
￭ Read/set cookies
￭ Issue web requests and read replies

￭ Note: despite the name, has nothing to do with Java!

84

Stefan Nagy

JavaScript

￭ A powerful, popular web programming language
￭ Scripts embedded in web pages returned by web server
￭ Scripts executed by browser (client-side scripting). Can:

￭ Alter contents of a web page
￭ Track events (mouse clicks, motion, keystrokes)
￭ Read/set cookies
￭ Issue web requests and read replies

￭ Note: despite the name, has nothing to do with Java!

85

For Project 3, you’ll use
just a tiny subset of this!

Stefan Nagy

CS 4440 Wiki: JavaScript Cheat Sheet

86

Stefan Nagy

￭ Code enclosed within <script> tags

Embedding JavaScript within HTML

87

Stefan Nagy

￭ Code enclosed within <script> tags

￭ Defining functions

Embedding JavaScript within HTML

88

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

Stefan Nagy

￭ Code enclosed within <script> tags

￭ Defining functions

￭ Event handlers embedded in HTML

Embedding JavaScript within HTML

89

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

<img src="picture.gif"
onMouseOver="javascript:hello()">

Stefan Nagy

￭ Code enclosed within <script> tags

￭ Defining functions

￭ Event handlers embedded in HTML

￭ Built-in functions can change content of a window: click-jacking attack

<a onMouseUp="window.open(‘http://www.evilsite.com’)"
href="http://www.trustedsite.com/">Trust me!?

Embedding JavaScript within HTML

90

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>

<img src="picture.gif"
onMouseOver="javascript:hello()">

Stefan Nagy

Document Object Model (DOM Tree)

￭ Platform- and language-neutral interface
￭ Allows programs and scripts to dynamically

access/update document content, structure, style

￭ Backbone of modern web browser plugins

91

Stefan Nagy

Document Object Model (DOM Tree)

￭ Platform- and language-neutral interface
￭ Allows programs and scripts to dynamically

access/update document content, structure, style

￭ Backbone of modern web browser plugins

￭ You can access and update the DOM Tree
yourself via browser’s web developer tools
￭ You will get familiar with this in Project 3!

92

Stefan Nagy

Questions?

93

Stefan Nagy

SQL

94

Stefan Nagy

Server-side vs. Client-side Scripting

95

Stefan Nagy

Server-side vs. Client-side Scripting

96

Stefan Nagy

Server-side vs. Client-side Scripting

97

Stefan Nagy

Server-side vs. Client-side Scripting

98

Servers are a gateway for attackers!

Stefan Nagy

Server-side vs. Client-side Scripting

99

Servers are a gateway for attackers!

Can’t we just restrict all scripting to
be exclusively on the client-side?

Stefan Nagy

Server-side vs. Client-side Scripting

100

Servers are a gateway for attackers!

Can’t we just restrict all scripting to
be exclusively on the client-side?

The client would need to have
all server data stored locally…

Stefan Nagy

Server-side vs. Client-side Scripting

101

Servers are a gateway for attackers!

Can’t we just restrict all scripting to
be exclusively on the client-side?

Would be inefficient and insecure!

The client would need to have
all server data stored locally…

Stefan Nagy

Web Databases

￭ Databases: how we store
data on the server-side
￭ Data stored by server
￭ Data queried by client
￭ Query executed by server

￭ A massive component of
modern web applications
￭ Examples: record keeping,

user account management

￭ Popular DB Software:
￭ MySQL, PostgreSQL
￭ Redis, MongoDB

102

query

result

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions
￭ Information stored in tables; columns = attributes, rows = records

￭ Fundamental operations:
￭ “SELECT” : express queries
￭ “INSERT” : create new records
￭ “UPDATE” : modify existing data
￭ “DELETE” : delete existing records
￭ “UNION” : combine results of multiple queries
￭ “WHERE/AND/OR” : conditional operations

103

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions
￭ Information stored in tables; columns = attributes, rows = records

￭ Fundamental operations:
￭ “SELECT” : express queries
￭ “INSERT” : create new records
￭ “UPDATE” : modify existing data
￭ “DELETE” : delete existing records
￭ “UNION” : combine results of multiple queries
￭ “WHERE/AND/OR” : conditional operations

￭ Syntactical Tips:
￭ “*” : all
￭ “NULL” : nothing
￭ “-- ” : comment-out the rest of the line (note the space at the end)

104

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM `users` WHERE location=‘Salt Lake City’”

105

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM `users` WHERE location=‘Salt Lake City’”

￭ E.g., Is there a user with username “bob” and password “abc123”?
￭ “SELECT * FROM `users` WHERE username=‘bob’ AND password=‘abc123’”

106

Stefan Nagy

Structured Query Language (SQL)

￭ A language to ask (“query”) databases questions

￭ E.g, How many users have the location Salt Lake City?
￭ “SELECT COUNT(*) FROM `users` WHERE location=‘Salt Lake City’”

￭ E.g., Is there a user with username “bob” and password “abc123”?
￭ “SELECT * FROM `users` WHERE username=‘bob’ AND password=‘abc123’”

￭ E.g., Completely delete this table!
￭ “DROP TABLE `users`”

107

Stefan Nagy

Example DB and SQL Queries

￭ Table name: users

￭ SELECT * FROM users;
￭ ???

￭ SELECT * FROM users WHERE id = 2;
￭ ???

￭ SELECT password FROM users WHERE username = “Prof Nagy”;
￭ ???

108

ID username password passHash location

1 Prof Nagy c4ntgu3$$m3! 0x12345678 Salt Lake, UT

2 Average User password123 0x87654321 Boulder, CO

3 Below Average password 0x81726354 Denver, CO

Stefan Nagy

Example DB and SQL Queries

￭ Table name: users

￭ SELECT * FROM users;
￭ Will return all users

￭ SELECT * FROM users WHERE id = 2;
￭ Will return just Average User

￭ SELECT password FROM users WHERE username = “Prof Nagy”;
￭ Will return Prof Nagy’s password

109

ID username password passHash location

1 Prof Nagy c4ntgu3$$m3! 0x12345678 Salt Lake, UT

2 Average User password123 0x87654321 Boulder, CO

3 Below Average password 0x81726354 Denver, CO

Stefan Nagy

Questions?

110

Stefan Nagy

Food for Thought

￭ SQL databases and other web applications operate on users’ inputs
￭ E.g., SQL queries, HTTP GET and POST requests
￭ That’s how we interact with their server-side applications!

￭ Question: can we assume that all user input will only ever be data?

111

Stefan Nagy

Next time on CS 4440…

112

Web Exploitation, SQL Injection, CSRF, XSS

