
Stefan Nagy

Week 1: Lecture B 
Python, Debugging, and VM Setup

Thursday, August 21, 2025
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Reminders

￭ Be sure to join the course Canvas and Piazza 
￭ See links at top of course page
￭ http://cs4440.eng.utah.edu

￭ Finish registering on PollEverywhere
￭ Account must be <yourUID>@utah.edu
￭ Location issues should be fixed
￭ Sign in at https://pollev.com/cs4440 

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu 
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Reminders: Course Resources

Course website ………..…. wiki, assignments, schedule, slides, office hours

Piazza ……………………………..…………. questions, discussion, announcements

PollEverywhere …………….….….…….…….……………………… lecture participation

Canvas ……………………….…. quizzes, project submission, course gradebook

Instructor email (snagy@cs.utah.edu) …………....…... administrative issues
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Reminders: Weekly Quizzes

￭ First weekly Lecture Quiz released on Canvas
￭ Submit by 11:59PM this Monday
￭ Late submissions not accepted

￭ Lecture quizzes released after Tuesday’s lecture
￭ Due the following Monday
￭ Covers content from both Tuesday + Thursday lectures
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Reminders: PollEverywhere

￭ PollEverywhere: check your UMail for an account registration email
￭ We’ll count today’s attendance—let us know of any issues!

￭ Use your UID@utah.edu when participating
￭ Should work automatically if you got the sign-up email
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Reminders: Office Hours

￭ TA office hours (24 total hours)
￭ First-come/first-serve via TA Queue
￭ Help with programming projects

￭ Professor’s office hours (2 total)
￭ Help understanding lecture material
￭ Administrative or grading issues

￭ Check the office hours calendar!
￭ http://cs4440.eng.utah.edu 
￭ Cancellations announced via Piazza
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Monday Tuesday Wednesday Thursday Friday

Note the rooms have changed!

http://cs4440.eng.utah.edu
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Reminders: Find a Teammate!

￭ Can work in teams of up to two
￭ Find teammates on Piazza
￭ Post on 

￭ Why work with someone else?
￭ Pair programming
￭ Divide and conquer
￭ Two sets of eyes to solve problems
￭ Teaching others helps you learn more

￭ Yes, you are free to work solo…
￭ But we encourage you to team up!
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Reminders: Grading Breakdown
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■ 10% = weekly solo quizzes based on lectures

■ 50% = four Programming Projects (12.5% each)

■ 35% = Final Exam covering all course material

■ 5% = participation during lecture poll exercises 



Stefan Nagy

Reminders: Collaboration Policy

￭ We encourage you to help each other learn! 
￭ You may give or receive help on key high-level concepts

￭ However, all code must only be written by you or your team

￭ Cheating is when you give/receive an unfair advantage. Examples:
￭ Distributing your solutions (e.g., to GitHub, Chegg, CourseHero) = cheating 
￭ Copying code/solutions (e.g., from GitHub, Google, another team) = cheating
￭ Copying code/solutions from AI tools (e.g., CoPilot, GPT, Bard, etc.) = cheating

￭ Violations = misconduct sanctions. Don’t jeopardize your degree!
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Reminders: Participation

￭ Lecture participation via PollEverywhere:
￭ Three lecture absences allowed at zero penalty
￭ We’ll track these internally—no need to notify us
￭ Log-in as your UMAIL (e.g., u8675309@utah.edu)

￭ Online participation on course Piazza:
￭ Make intellectual contributions to help others learn
￭ Collaboration policies apply—don’t share your code!
￭ Top-10 answerers will receive 5pts extra credit

￭ How to lose points:
￭ Frequently missing class, or not contributing online
￭ Engaging in disruptive behavior or violating policies
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Reminders: Course Website

￭ Course website: your go-to resource for all things CS 4440
￭ http://cs4440.eng.utah.edu  
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Reminders: Supplemental Content

￭ To further help you learn, we’ve 
provided supplemental content 
relevant to every lecture topic
￭ Short blog posts
￭ Free textbook chapters
￭ Fun podcasts or videos

￭ Totally optional—not required
￭ … though we do recommend them 

as additional resources to lectures!

￭ To access, click the drop-down 
“▶” button beside each lecture
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￭ Our aim is to lower the 
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Many more resources 
added since last Fall
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Reminders: Course Wiki
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￭ Our aim is to lower the 
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Many more resources 
added since Fall 2024
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Contributions welcome!
https://github.com/stevenagy/cs4440-wiki

￭ Page ideas, typo and bug fixes, etc.
￭ Tutorials that you would find helpful
￭ Significant Wiki contributions will be awarded 

1 point extra credit to your participation grade
￭ Significance will be determined by instructors; 

must clear page ideas with me before starting

Reminders: Course Wiki

https://github.com/stevenagy/cs4440-wiki
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Reminders: The Utah Cybersecurity Club
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Announcements: Project 1

￭ Project 1: Crypto releasing on Tuesday, August 26
￭ Deadline: Thursday, September 18th by 11:59PM
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Reminders: Project Lateness Policy

￭ Course staff constraints:
￭ We want to return graded work promptly
￭ Can’t discuss solutions until all work graded

￭ Project lateness policy:
￭ 10% penalty for being late up to two days past deadline
￭ Will not accept after 48 hours past the original deadline
￭ Extensions made only under extraordinary circumstances

￭ Please start early! It is your responsibility to… 
￭ Turn in assignments ahead of the deadline
￭ Ensure your submissions work as intended
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Questions?
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Last time on CS 4440…
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The Security Mindset
Modeling the Attacker

Assessing Risk
Secure Design
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￭ Computer security studies how systems 
behave in the presence of an adversary
￭ Independent / hobbyist hackers
￭ “Script kiddies”
￭ Cyber-criminal gangs
￭ Nation-state government hackers
￭ Disgruntled students (or professors)

￭ Definition: an intelligence that actively 
tries to cause the system to misbehave.
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The Attacker
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Thinking like an Attacker

￭ Look for the weakest links
￭ What is easiest to attack

￭ Identify assumptions that 
the security depends on
￭ Are any assumptions false? 
￭ Can you render them false?

￭ Think outside the box!
￭ Don’t be constrained by the 

system designer’s worldview
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Thinking as a Defender

￭ Security Policy 
￭ What resources are we protecting?
￭ What properties are we enforcing?
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Thinking as a Defender

￭ Security Policy 
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model  
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?
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Thinking as a Defender

￭ Security Policy 
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model  
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk 
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?
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Thinking as a Defender

￭ Security Policy 
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model  
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk 
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?

￭ Assessing Likelihood 
￭ Countermeasures
￭ Costs vs. benefits?
￭ Technical vs. nontechnical?
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Thinking as a Defender

￭ Security Policy 
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model  
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk 
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?

￭ Assessing Likelihood 
￭ Countermeasures
￭ Costs vs. benefits?
￭ Technical vs. nontechnical?

26

Rational paranoia: 
Thinking rigorously, yet 
realistically about risk!
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Security through… obscurity?

27

￭ Common mistakes: 
￭ Convincing yourself that a system is 

already secure in its current form
￭ Convincing yourself a system is safe 

because attacker won't know XYZ

￭ Better approach:
￭ ??? 
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Security through… obscurity?

￭ Common mistakes: 
￭ Convincing yourself that a system is 

already secure in its current form
￭ Convincing yourself a system is safe 

because attacker won't know XYZ

￭ Better approach:
￭ Limit key assumptions that security 

of your system depends upon
￭ Identify any components exposed 

to attackers and their weaknesses
￭ Assume attacker knows everything 

but a small bit of data (e.g., a key)
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Rational Paranoia Exercises

Should you use a strong password?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?
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Rational Paranoia Exercises

Using a credit card safely?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?
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Attacks

The Security Mindset

31

Defenses

The Security Mindset: thinking as both the attacker and defender!
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Questions?
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This time on CS 4440…
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Intro to Python
Debugging Code
Course VM Setup
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Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

34



Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic! 
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Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic! 
￭ Only using a small subset of their capabilities
￭ We’ll cover some basics in lecture as we go along
￭ We’ll post resources for you on the CS 4440 Wiki
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An Intro to Python 3
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Python 3

￭ Primary language for your Projects
￭ Though expect to see some others too

￭ Characteristics:
￭ High-level
￭ Interpreted
￭ Object Oriented
￭ Dynamically Typed
￭ Lots of indentation
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Running Python Code

￭ Interactive mode
￭ Launch Python 3 console
￭ Enter code line-by-line
￭ Executed line-by-line

40

$ python3

>>> print("Hello from the interpreter!")

Hello f rom the interpreter!

>>> exit()
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Running Python Code

￭ Scripting mode
￭ Edit your script (e.g., MyScript.py)
￭ Then call the python3 binary on it

41

$ cat MyScript.py

#!/usr/bin/python3

print("Hello from scripting mode!")

$ python3 MyScript.py

Hello f rom scripting mode!
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Writing Scripts

￭ You’ll be writing relatively simple scripts
￭ No need for an IDE
￭ IDEs can/will break things

￭ Recommended text editors:
￭ VIM
￭ Nano
￭ Emacs
￭ FeatherPad
￭ Many others—pick one you like!
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Variables

￭ Can contain alphanumerical characters and some special characters

￭ Common conventions: 
￭ Variable names that start with lower-case letters
￭ Class names beginning with a capital letter

￭ Some keywords are reserved (cannot be used as variable names) 
￭ Examples: and, continue, break
￭ Python will complain if you use these

￭ Dynamically typed: a variable’s type is derived from its value
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Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)
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Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the  “=” sign

45

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>
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Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the  “=” sign
￭ Value changed? So does type!
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 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

 >>> x = "cs4440"

 >>> print(type(x))

 < c lass 'str'>



Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it

47

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>
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Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it
￭ Re-casting will change type!
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 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

 >>> x = float(x)

 >>> print(x, type(x))

 5.0 < c lass float>



Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

49

 >>> x = "odoyle"
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Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length

50

 >>> x = "odoyle"

 >>> print(len(x))

 6
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Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending

51

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules
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Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending
￭ Substrings
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 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

 >>> print("odoy" in x)

 True
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Strings

￭ Other string manipulations:

53

 >>> x = "cs4440:fa23"
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Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
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 >>> x = "cs4440:fa23" 

 >>> print(x.split(':')

 ['cs4440', 'fa23']
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Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters

55

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23
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Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters
￭ Repeating characters
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 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

 >>> print('A'*10)

 AAAAAAAAAA
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Byte Strings

￭ Sometimes you will work with data as bytes 
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string

57

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>
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Byte Strings

￭ Sometimes you will work with data as bytes 
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string

58

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>
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Byte Strings

￭ Sometimes you will work with data as bytes 
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

59

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>
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Byte Strings

￭ Sometimes you will work with data as bytes 
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

￭ Conceptually can be a little confusing
￭ Functions print() and type() are your friends!
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 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>
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Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki
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Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

62



Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements
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Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

￭ Functions
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Questions?

65
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Debugging Your Code
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Sample Program

￭ What will the following code do?

67

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)
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￭ What will the following code do?

Sample Program

69

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)
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Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

70

Traceback (most recent call last):

  File "MyScript.py", line 2, in <module>

    next_age = age + 1

TypeError: must be str, not int
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Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number 
￭ The actual line of code 

71

Traceback (most recent call last):

  File "MyScript.py", line 2, in <module>

    next_age = age + 1

TypeError: must be str, not int
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Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number 
￭ The actual line of code 

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are 

different data types!
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Traceback (most recent call last):

  File "MyScript.py", line 2, in <module>

    next_age = age + 1

TypeError: must be str, not int
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Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number 
￭ The actual line of code 

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are 

different data types!

￭ The fix: cast age as an int

73

 age = input("How old are you? ")

 next_age = int(age) + 1
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Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!
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Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!
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ERROR!

ERROR!

CORRECT
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Lazy Debugging

76
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Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!
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Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?
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Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

￭ Please try to avoid “instructor private posts” about debugging your code
￭ We get a lot of these near deadlines—it becomes impossible to keep up / help everyone!
￭ We may un-private your post if it contains information that’s useful for the class 🙂
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Questions?

80
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VM Setup
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Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

82
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Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

￭ Important: your computer determines what VM software you will use
￭ Use VirtualBox if:

￭ Your laptop is a Windows-, Linux-, or Intel-based Mac (i.e., NOT an M1/M2/etc.)
￭ Use UTM if:

￭ Your laptop is an ARM-based Mac (i.e., an M1/M2/etc.)
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Setup the CS 4440 VM

￭ Open the CS 4440 Wiki
￭ See the VM Setup page
￭ Follow the instructions
￭ Once your VM is setup, 

you are free to leave!
￭ In the meantime, feel 

free to ask questions
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Course Homepage:  http://cs4440.eng.utah.edu
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Next time on CS 4440…

86

Message integrity (a.k.a. applied cryptography)


