
Stefan Nagy

Week 1: Lecture B
Python, Debugging, and VM Setup

Thursday, August 21, 2025

1

Stefan Nagy

Reminders

￭ Be sure to join the course Canvas and Piazza
￭ See links at top of course page
￭ http://cs4440.eng.utah.edu

￭ Finish registering on PollEverywhere
￭ Account must be <yourUID>@utah.edu
￭ Location issues should be fixed
￭ Sign in at https://pollev.com/cs4440

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu

2

http://cs4440.eng.utah.edu
https://pollev.com/cs4440
mailto:snagy@cs.utah.edu

Stefan Nagy

Reminders: Course Resources

Course website ………..…. wiki, assignments, schedule, slides, office hours

Piazza ……………………………..…………. questions, discussion, announcements

PollEverywhere …………….….….…….…….……………………… lecture participation

Canvas ……………………….…. quizzes, project submission, course gradebook

Instructor email (snagy@cs.utah.edu) …………....…... administrative issues

3

mailto:snagy@cs.utah.edu

Stefan Nagy

Reminders: Weekly Quizzes

￭ First weekly Lecture Quiz released on Canvas
￭ Submit by 11:59PM this Monday
￭ Late submissions not accepted

￭ Lecture quizzes released after Tuesday’s lecture
￭ Due the following Monday
￭ Covers content from both Tuesday + Thursday lectures

4

Stefan Nagy

Reminders: PollEverywhere

￭ PollEverywhere: check your UMail for an account registration email
￭ We’ll count today’s attendance—let us know of any issues!

￭ Use your UID@utah.edu when participating
￭ Should work automatically if you got the sign-up email

5

mailto:UID@utah.edu

Stefan Nagy

Reminders: Office Hours

￭ TA office hours (24 total hours)
￭ First-come/first-serve via TA Queue
￭ Help with programming projects

￭ Professor’s office hours (2 total)
￭ Help understanding lecture material
￭ Administrative or grading issues

￭ Check the office hours calendar!
￭ http://cs4440.eng.utah.edu
￭ Cancellations announced via Piazza

6

Monday Tuesday Wednesday Thursday Friday

Note the rooms have changed!

http://cs4440.eng.utah.edu

Stefan Nagy

Reminders: Find a Teammate!

￭ Can work in teams of up to two
￭ Find teammates on Piazza
￭ Post on

￭ Why work with someone else?
￭ Pair programming
￭ Divide and conquer
￭ Two sets of eyes to solve problems
￭ Teaching others helps you learn more

￭ Yes, you are free to work solo…
￭ But we encourage you to team up!

7

Stefan Nagy

Reminders: Grading Breakdown

8

■ 10% = weekly solo quizzes based on lectures

■ 50% = four Programming Projects (12.5% each)

■ 35% = Final Exam covering all course material

■ 5% = participation during lecture poll exercises

Stefan Nagy

Reminders: Collaboration Policy

￭ We encourage you to help each other learn!
￭ You may give or receive help on key high-level concepts

￭ However, all code must only be written by you or your team

￭ Cheating is when you give/receive an unfair advantage. Examples:
￭ Distributing your solutions (e.g., to GitHub, Chegg, CourseHero) = cheating
￭ Copying code/solutions (e.g., from GitHub, Google, another team) = cheating
￭ Copying code/solutions from AI tools (e.g., CoPilot, GPT, Bard, etc.) = cheating

￭ Violations = misconduct sanctions. Don’t jeopardize your degree!

9

Stefan Nagy

Reminders: Participation

￭ Lecture participation via PollEverywhere:
￭ Three lecture absences allowed at zero penalty
￭ We’ll track these internally—no need to notify us
￭ Log-in as your UMAIL (e.g., u8675309@utah.edu)

￭ Online participation on course Piazza:
￭ Make intellectual contributions to help others learn
￭ Collaboration policies apply—don’t share your code!
￭ Top-10 answerers will receive 5pts extra credit

￭ How to lose points:
￭ Frequently missing class, or not contributing online
￭ Engaging in disruptive behavior or violating policies

10

Stefan Nagy

Reminders: Course Website

￭ Course website: your go-to resource for all things CS 4440
￭ http://cs4440.eng.utah.edu

11

http://cs4440.eng.utah.edu

Stefan Nagy

Reminders: Supplemental Content

￭ To further help you learn, we’ve
provided supplemental content
relevant to every lecture topic
￭ Short blog posts
￭ Free textbook chapters
￭ Fun podcasts or videos

￭ Totally optional—not required
￭ … though we do recommend them

as additional resources to lectures!

￭ To access, click the drop-down
“▶” button beside each lecture

12

Stefan Nagy

￭ Our aim is to lower the
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Many more resources
added since last Fall

13

Reminders: Course Wiki

Stefan Nagy

￭ Our aim is to lower the
overall learning curve

￭ Resources to help you:
￭ Tutorials
￭ Cheat Sheets
￭ Software documentation

￭ Many more resources
added since Fall 2024

14

Contributions welcome!
https://github.com/stevenagy/cs4440-wiki

￭ Page ideas, typo and bug fixes, etc.
￭ Tutorials that you would find helpful
￭ Significant Wiki contributions will be awarded

1 point extra credit to your participation grade
￭ Significance will be determined by instructors;

must clear page ideas with me before starting

Reminders: Course Wiki

https://github.com/stevenagy/cs4440-wiki

Stefan Nagy

Reminders: The Utah Cybersecurity Club

15

Stefan Nagy

Announcements: Project 1

￭ Project 1: Crypto releasing on Tuesday, August 26
￭ Deadline: Thursday, September 18th by 11:59PM

16

Stefan Nagy

Reminders: Project Lateness Policy

￭ Course staff constraints:
￭ We want to return graded work promptly
￭ Can’t discuss solutions until all work graded

￭ Project lateness policy:
￭ 10% penalty for being late up to two days past deadline
￭ Will not accept after 48 hours past the original deadline
￭ Extensions made only under extraordinary circumstances

￭ Please start early! It is your responsibility to…
￭ Turn in assignments ahead of the deadline
￭ Ensure your submissions work as intended

17

Stefan Nagy

Questions?

18

Stefan Nagy

Last time on CS 4440…

19

The Security Mindset
Modeling the Attacker

Assessing Risk
Secure Design

Stefan Nagy

￭ Computer security studies how systems
behave in the presence of an adversary
￭ Independent / hobbyist hackers
￭ “Script kiddies”
￭ Cyber-criminal gangs
￭ Nation-state government hackers
￭ Disgruntled students (or professors)

￭ Definition: an intelligence that actively
tries to cause the system to misbehave.

20

The Attacker

Stefan Nagy

Thinking like an Attacker

￭ Look for the weakest links
￭ What is easiest to attack

￭ Identify assumptions that
the security depends on
￭ Are any assumptions false?
￭ Can you render them false?

￭ Think outside the box!
￭ Don’t be constrained by the

system designer’s worldview

21

Stefan Nagy

Thinking as a Defender

￭ Security Policy
￭ What resources are we protecting?
￭ What properties are we enforcing?

22

Stefan Nagy

Thinking as a Defender

￭ Security Policy
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

23

Stefan Nagy

Thinking as a Defender

￭ Security Policy
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?

24

Stefan Nagy

Thinking as a Defender

￭ Security Policy
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?

￭ Assessing Likelihood
￭ Countermeasures
￭ Costs vs. benefits?
￭ Technical vs. nontechnical?

25

Stefan Nagy

Thinking as a Defender

￭ Security Policy
￭ What resources are we protecting?
￭ What properties are we enforcing?

￭ Threat Model
￭ Who will attack us? Capabilities? Motivations?
￭ What types of attacks must we try to prevent?

￭ Assessing Risk
￭ What are the system’s weaknesses?
￭ How will successful attacks hurt us?

￭ Assessing Likelihood
￭ Countermeasures
￭ Costs vs. benefits?
￭ Technical vs. nontechnical?

26

Rational paranoia:
Thinking rigorously, yet
realistically about risk!

Stefan Nagy

Security through… obscurity?

27

￭ Common mistakes:
￭ Convincing yourself that a system is

already secure in its current form
￭ Convincing yourself a system is safe

because attacker won't know XYZ

￭ Better approach:
￭ ???

Stefan Nagy

Security through… obscurity?

￭ Common mistakes:
￭ Convincing yourself that a system is

already secure in its current form
￭ Convincing yourself a system is safe

because attacker won't know XYZ

￭ Better approach:
￭ Limit key assumptions that security

of your system depends upon
￭ Identify any components exposed

to attackers and their weaknesses
￭ Assume attacker knows everything

but a small bit of data (e.g., a key)

28

Stefan Nagy

Rational Paranoia Exercises

Should you use a strong password?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?

29

Stefan Nagy

Rational Paranoia Exercises

Using a credit card safely?

￭ Assets?
￭ Adversaries?
￭ Risk assessment?
￭ Countermeasures?
￭ Costs/benefits?

30

Stefan Nagy

Attacks

The Security Mindset

31

Defenses

The Security Mindset: thinking as both the attacker and defender!

Stefan Nagy

Questions?

32

Stefan Nagy

This time on CS 4440…

33

Intro to Python
Debugging Code
Course VM Setup

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

34

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!

35

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!
￭ Only using a small subset of their capabilities
￭ We’ll cover some basics in lecture as we go along
￭ We’ll post resources for you on the CS 4440 Wiki

36

Stefan Nagy 37

Stefan Nagy

An Intro to Python 3

38

Stefan Nagy

Python 3

￭ Primary language for your Projects
￭ Though expect to see some others too

￭ Characteristics:
￭ High-level
￭ Interpreted
￭ Object Oriented
￭ Dynamically Typed
￭ Lots of indentation

39

Stefan Nagy

Running Python Code

￭ Interactive mode
￭ Launch Python 3 console
￭ Enter code line-by-line
￭ Executed line-by-line

40

$ python3

>>> print("Hello from the interpreter!")

Hello f rom the interpreter!

>>> exit()

Stefan Nagy

Running Python Code

￭ Scripting mode
￭ Edit your script (e.g., MyScript.py)
￭ Then call the python3 binary on it

41

$ cat MyScript.py

#!/usr/bin/python3

print("Hello from scripting mode!")

$ python3 MyScript.py

Hello f rom scripting mode!

Stefan Nagy

Writing Scripts

￭ You’ll be writing relatively simple scripts
￭ No need for an IDE
￭ IDEs can/will break things

￭ Recommended text editors:
￭ VIM
￭ Nano
￭ Emacs
￭ FeatherPad
￭ Many others—pick one you like!

42

Stefan Nagy

Variables

￭ Can contain alphanumerical characters and some special characters

￭ Common conventions:
￭ Variable names that start with lower-case letters
￭ Class names beginning with a capital letter

￭ Some keywords are reserved (cannot be used as variable names)
￭ Examples: and, continue, break
￭ Python will complain if you use these

￭ Dynamically typed: a variable’s type is derived from its value

43

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

44

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the “=” sign

45

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the “=” sign
￭ Value changed? So does type!

46

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

 >>> x = "cs4440"

 >>> print(type(x))

 < c lass 'str'>

Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it

47

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it
￭ Re-casting will change type!

48

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

 >>> x = float(x)

 >>> print(x, type(x))

 5.0 < c lass float>

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

49

 >>> x = "odoyle"

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length

50

 >>> x = "odoyle"

 >>> print(len(x))

 6

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending

51

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending
￭ Substrings

52

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

 >>> print("odoy" in x)

 True

Stefan Nagy

Strings

￭ Other string manipulations:

53

 >>> x = "cs4440:fa23"

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter

54

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters

55

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters
￭ Repeating characters

56

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

 >>> print('A'*10)

 AAAAAAAAAA

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string

57

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string

58

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

59

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

￭ Conceptually can be a little confusing
￭ Functions print() and type() are your friends!

60

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

61

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

62

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

63

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

￭ Functions

64

Stefan Nagy

Questions?

65

Stefan Nagy

Debugging Your Code

66

Stefan Nagy

Sample Program

￭ What will the following code do?

67

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)

Stefan Nagy 68

Stefan Nagy

￭ What will the following code do?

Sample Program

69

 age = input("How old are you? ")

 next_age = age + 1

 print("Next year you will be", next_age)

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

70

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

71

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are

different data types!

72

Traceback (most recent call last):

 File "MyScript.py", line 2, in <module>

 next_age = age + 1

TypeError: must be str, not int

Stefan Nagy

Where to begin debugging?

￭ Errors say where the error is!
￭ Filename
￭ Line number
￭ The actual line of code

￭ The error’s root cause:
￭ Program tried "29"+1
￭ Strings and numbers are

different data types!

￭ The fix: cast age as an int

73

 age = input("How old are you? ")

 next_age = int(age) + 1

Stefan Nagy

Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!

74

Stefan Nagy

Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!

75

ERROR!

ERROR!

CORRECT

Stefan Nagy

Lazy Debugging

76

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

77

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

78

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

￭ Please try to avoid “instructor private posts” about debugging your code
￭ We get a lot of these near deadlines—it becomes impossible to keep up / help everyone!
￭ We may un-private your post if it contains information that’s useful for the class 🙂

79

Stefan Nagy

Questions?

80

Stefan Nagy

VM Setup

81

Stefan Nagy

Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

82

Stefan Nagy

Virtual Machines (VM)

￭ Why do we use a VM in this course?
￭ Minor software differences can break your attacks
￭ We want everyone to have the same software and OS

￭ Python & Firefox versions, security settings, etc.
￭ We’ll grade everyone using this Linux VM environment

￭ Important: your computer determines what VM software you will use
￭ Use VirtualBox if:

￭ Your laptop is a Windows-, Linux-, or Intel-based Mac (i.e., NOT an M1/M2/etc.)
￭ Use UTM if:

￭ Your laptop is an ARM-based Mac (i.e., an M1/M2/etc.)

83

Stefan Nagy 84

Stefan Nagy

Setup the CS 4440 VM

￭ Open the CS 4440 Wiki
￭ See the VM Setup page
￭ Follow the instructions
￭ Once your VM is setup,

you are free to leave!
￭ In the meantime, feel

free to ask questions

85

Course Homepage: http://cs4440.eng.utah.edu

Stefan Nagy

Next time on CS 4440…

86

Message integrity (a.k.a. applied cryptography)

