Week 1: Lecture A Course Intro & The Security Mindset

Tuesday, August 19, 2025

Reminders

- Be sure to join the course Canvas and Piazza
 - See links at top of course page
 - http://cs4440.eng.utah.edu
- Trouble accessing? See me after class!
 - Or email me at: snagy@cs.utah.edu

Today's Class

- Welcome to CS 4440
- Course Overview
- The Security Mindset
 - Thinking like an attacker
 - Thinking as a defender
- Ethics and Academic Integrity

Course Staff

Course Instructor

Stefan Nagy Assistant Professor, KSoC

Email: snagy@cs.utah.edu

Office: Merrill Eng. 3446

Teaching Assistants

Alishia Seo

Alan Mo

Ayden Mcgonigal

Teagan Smith

About Me

Stefan Nagy Assistant Professor, KSoC

cs.utah.edu/~snagy twitter.com/snagycs snagycs.bsky.social @snagy@infosec.exchange

Co-founder and Co-director:

SSG UTAH SOFTWARE SECURITY GROUP
SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH

Places I've been:

University of Utah, 2022-now Virginia Tech, Ph.D. 2016-2022 Univ. of Illinois, B.S. 2012-2016

My Research Group

LAB FUTURE TECHNOLGY FOR USABLE, RELIABLE, & EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING | THE UNIVERSITY OF UTAH | SALT LAKE CITY

Our work: systems and software security, binary analysis, fuzzing

My Prior Research: Faster Fuzzing

My Current Research: More Fuzzing!

FuTURES³ Lab Reported Bugs: 193 We regularly report new software logic bugs and security vulnerabilities as part of our research. Below is a continually updated list: Show 25 v entries Search: Date Description Lead 2025-07-10 TmuxRs #64: 'tmux-rs' does not expand '#(whoami)' in 'status-right' Yeaseen Arafat 2025-07-08 TmuxRs #48: 'rename-window' and 'rename-session' add trailing garbage bytes Yeaseen Arafat 2025-07-08 TmuxRs #50: 'resize-pane' directions '-D' and '-U' do not work as expected Yeaseen Arafat 2025-07-08 TmuxRs #51: 'synchronize-panes' does not work correctly in 'tmux-rs' Yeaseen Arafat 2025-07-08 Yeaseen Arafat TmuxRs #52: 'display-message' shows '%s-invalid-utf8' for pane index/title expansions 2025-07-08 TmuxRs #53: Parsing Issue: `tmux-rs` rejects `-s` but accepts `-S` for `new-session`, unlike Yeaseen Arafat Zig #24010: translate-c geenerates Invalid Pointer Cast for (int *)1 2025-05-29 Yeaseen Arafat 2025-05-29 Dia #568: Transient segfault while using dia Dillon Otto 2025-05-28 Umbrello #504939: Modify Diagram > Open (Discard) > Print Preview crashes with a Dillon Otto segfault 2025-05-28 Umbrello #504940: Creating 2 new sequence diagrams then creating a new document Dillon Otto segfaults

one of the primary motivations for this improvement was a privately reported decompilation flaw from Zao Yang and Dr. Stefan Nagy of the FuTURES³ Lab. Keep an eye on their forthcoming research and we're grateful for their notification!

futures.cs.utah.edu/bugs

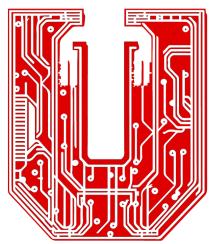
My Other Courses

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today's state-of-the-art techniques for uncovering hidden security vulnerabilities in software. Projects will provide hands-on experience with real-world security tools like AFL++ and AddressSanitizer, culminating in a final project where **you'll team up to hunt down, analyze, and report security bugs in a real application or system of your choice**.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics like software security, systems programming, and C/C++.

Professor



Stefan Nagy

cs.utah.edu/~snagy/courses/cs5963/

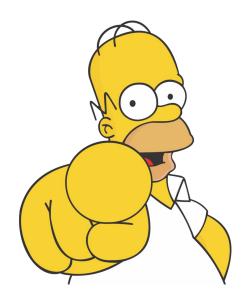
Stefan Nagy

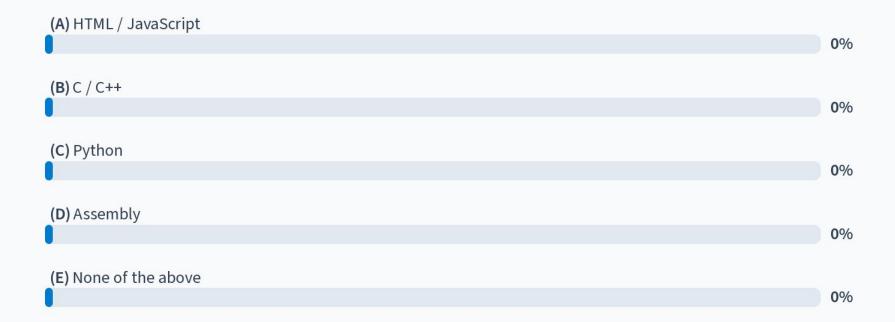
The Utah Cybersecurity Club

utahsec

Come hack with us!

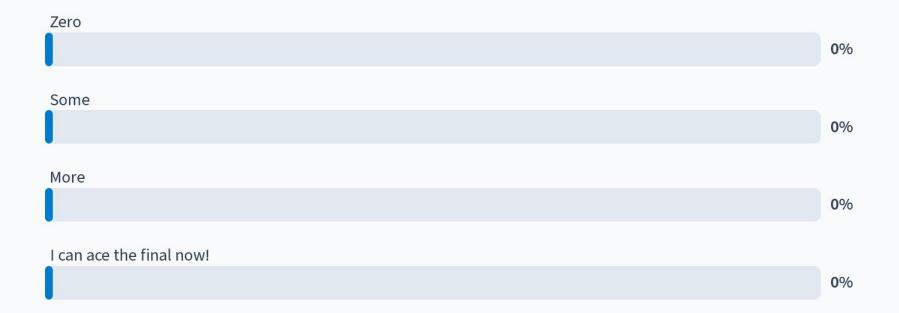
utahsec.cs.utah.edu


The Utah Cybersecurity Club

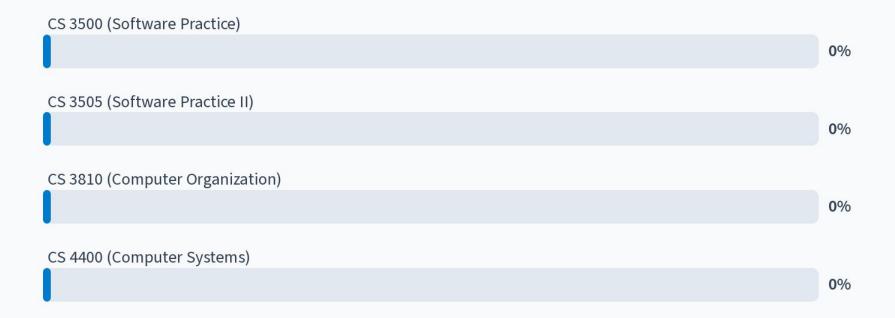

Help us get to know you!

Help us get to know you!

- Throughout lecture we'll use Poll Everywhere
 - Use your laptop to send-in your responses
 - Share location—we're checking you're here!
 - Poll participation = 5% of your grade
- To receive credit:
 - Log-in via your UMAIL (e.g., u8675309@utah.edu)
 - We've automatically registered you (if not, see me)
- Answer the following questions to give us some more info about you!



Experience with Programming Languages



Experience with Cybersecurity

Courses Previously Taken

Experience with Tools

Debuggers (e.g., GDB)	
	0%
The Linux Terminal	
	0%
Virtual Machines (e.g., VirtualBox)	
	0%
Wireshark	
	0%
Firefox or Chrome Dev Consoles	
	0%

Last Question

What do you hope to get out of this course?

And no, I don't mean the grade that you want 🙂

Course Overview

Course Goals

Critical Thinking

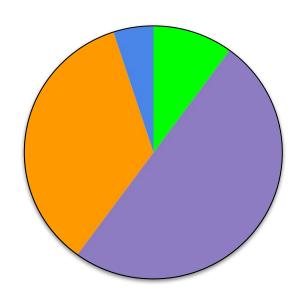
- How to think like an attacker
- How to reason about threats and risks
- How to balance security costs and benefits

Technical Skills

- How to protect yourself
- How to manage and defend systems
- How to design and program secure systems
- Learning to be a security-conscious citizen
- Learning to be a L337 H4X0R... but an ethical one!

Topics

 Course Intro & The Security Mindset Principles, threat modeling, vulnerabilities, attacking versus defending; VM setup 	Week 1
 P1: Communications Security Public- and private-key crypto, digital signatures, authentication, hashes, secure channels 	Weeks 2-4
 P2: Application Security Memory protection, sandboxing, virtual machines, software exploitation, malware, testing 	Weeks 5-8
 P3: Web and Network Security IP, TCP, routing, net protocols, web architecture, web attacks, firewalls, intrusion detection 	<u>Weeks 9–12</u>
 P4: New Frontiers in Security Side channels, hardware, reverse engineering, election security, policy, ethics 	<u>Weeks 13–15</u>
 Course Wrap-up Careers in cybersecurity, the security ecosystem; the final exam 	<u>Week 16</u>


2

Common Concerns

- Attendance required? Yes.
 - Standard lecture format:
 - ~20 minutes of review
 - ~55 minutes of new material
- Textbook is required? No.
 - ... but highly recommended!
 - We provide 6 free textbooks on the site!
- Midterm exam? No. Final exam? Yes.
 - Covers entire course material
 - Review session as final lecture
 - Similar to in-class and quiz questions

Grading

- **10%** = weekly solo quizzes based on lectures
 - **50%** = four Programming Projects (**12.5%** each)
- 35% = Final Exam covering all course material
- **5%** = participation during lecture poll exercises

Lecture Quizzes (10%)

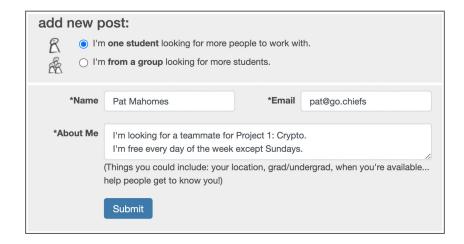
- Weekly exercises to be completed individually
 - Designed to test your understanding of the lectures

- Released on Canvas after Tuesday's lecture
 - You may work until the following Monday by 11:59 PM
 - Strict deadline—late submissions will not be accepted

Lowest score will be dropped at no penalty

2

Programming Projects (50%)


- Four projects completed in groups of no more than two
 - You can discuss your approaches with other groups
 - Must complete and submit only within your group
- Topics: Crypto, App security, Web security, Net security
- Where to find and submit?
 - Distributed via course website (we'll announce when)
 - Upload your work (one per team) as tarball to Canvas

Stefan Nagy 2

Project Teams

- Can work in teams of up to two
 - Find teammates on Piazza
 - Post on Search for Teammates! 12/21/22
- Why work with someone else?
 - Pair programming
 - Divide and conquer
 - Two sets of eyes to solve problems
 - Teaching others helps you learn more
- Yes, you are free to work solo...
 - But we encourage you to team up!

Project Lateness Policy

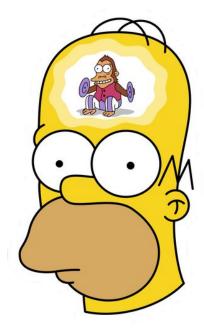
- Course staff constraints:
 - We want to return graded work promptly
 - Can't discuss solutions until all work graded
- Project lateness policy:
 - 10% penalty for being late up to two days past deadline
 - Will not accept after 48 hours past the original deadline
 - Extensions made only under extraordinary circumstances
- Please start early! It is your responsibility to...
 - Turn in assignments <u>ahead</u> of the deadline
 - Ensure your submissions work as intended

Project Regrade Policy

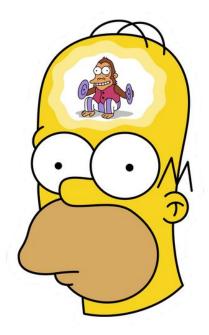
- After grades posted, regrade form open for one week
 - We'll distribute regrade forms via Piazza
- Valid regrade requests:
 - You have verified your solution is correct (i.e., we made an error in grading)
- Requests that will be rejected:
 - My code crashed, but I've now fixed it
 - I am looking for more partial credit
 - I submitted late without an extension
 - I missed the regrade request deadline
- Your responsibility to stay atop of this!

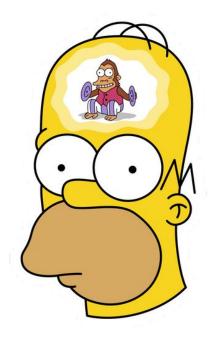
Project Collaboration Policy

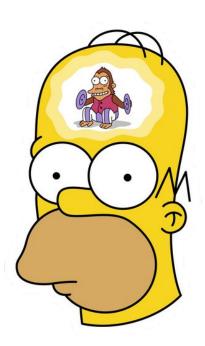
- We encourage you to help each other learn!
 - You may give or receive help on key high-level concepts
- However, all code must only be written by you or your team
- Cheating is when you give/receive an unfair advantage. Examples:
 - Distributing your solutions (e.g., to GitHub, Chegg, CourseHero) = cheating
 - Copying code/solutions (e.g., from GitHub, Google, another team) = cheating
 - Copying code/solutions from AI tools (e.g., CoPilot, GPT, Bard, etc.) = cheating
- Violations = misconduct sanctions. Don't jeopardize your degree!


29

Final Exam (35%)


- One exam covering all course material
- Questions similar to homework problems
- Final lecture will serve as a review session
- Save the date: 1–3PM on Wednesday, December 10
 - Late exams only for conflicts with other finals


- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)


- **Lecture** participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!

- **Lecture** participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as **your UMAIL** (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!
 - Top-10 answerers will receive 5pts extra credit

- Lecture participation via PollEverywhere:
 - Three lecture absences allowed at zero penalty
 - We'll track these internally—no need to notify us
 - Log-in as your UMAIL (e.g., u8675309@utah.edu)
- Online participation on course Piazza:
 - Make intellectual contributions to help others learn
 - Collaboration policies apply—don't share your code!
 - Top-10 answerers will receive 5pts extra credit
- How to lose points:
 - Frequently missing class, or not contributing online
 - Engaging in disruptive behavior or violating policies

- Lectures where attendance will NOT be graded:
 - Today's introductory lecture
 - Week 7B, Week 13A, and Week 13B
 - Instructor out of town
 - Guest lectures planned
 - Week 14B (final review lecture)
- Participation total = 23 lectures
 - Three absences dropped
 - We'll track these internally

35

Stefan Nagy

Lectures

- Tuesdays and Thursdays
 - 2:00-3:20 PM at Warnock L105
- Take notes!
 - Studies show most effective if hand-written ••
- Slides posted prior to each lecture
 - See "Schedule" on http://cs4440.eng.utah.edu
- Interrupt with questions, (relevant) stories
- Not recorded—come to lectures!
 - ... and pay attention, and take notes!
 - Avoid distractions like surfing the web, Discord, etc.

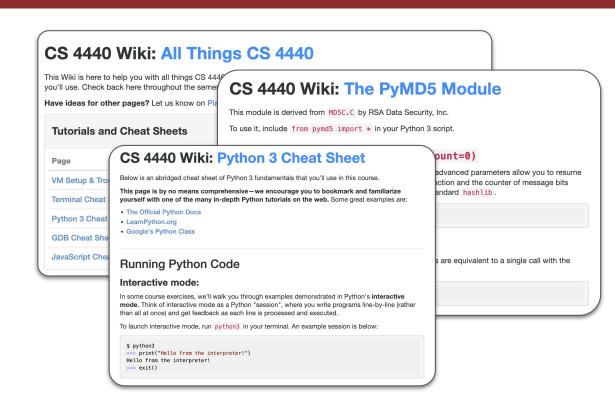
Office Hours

- TA office hours (23 total hours)
 - First-come/first-serve via TA Queue
 - Help with programming projects
- Professor's office hours
 - Help understanding lecture material
 - Administrative or grading issues
- Check the office hours calendar!
 - http://cs4440.eng.utah.edu
 - Cancellations announced via Piazza

37

Communication

- Course website: your go-to resource for all things CS 4440
 - http://cs4440.eng.utah.edu



Stefan Nagy 38

The CS 4440 Wiki

- Our aim is to lower the overall learning curve
- Resources to help you:
 - Tutorials
 - Cheat Sheets
 - Software documentation
- Many more resources added since last Fall

Stefan Nagy

The CS 4440 Wiki

Our aim is to lower the overall learn

- Resources to
 - Tutorials
 - Cheat She
 - Software d

Many more r

Contributions welcome!

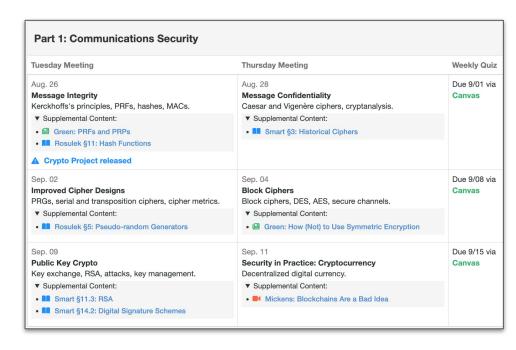
https://github.com/stevenagy/cs4440-wiki

- Page ideas, typo and bug fixes, etc.
- Tutorials that you would find helpful
- Significant Wiki contributions will be awarded
 1 point extra credit to your participation grade
- Significance will be determined by instructors;
 must clear page ideas with me before starting

ata Security, Inc.

ur Python 3 script.

ount=0)


advanced parameters allow you to resume iction and the counter of message bits andard hashtib.

s are:

\$ python3
>>> print("Hello from the interpreter!")
Hello from the interpreter!
>>> exit()

Supplemental Content

- To further help you learn, we've provided supplemental content relevant to every lecture topic
 - Short blog posts
 - Free textbook chapters
 - Fun podcasts or videos
- Totally optional—not required
 - ... though we do recommend them as additional resources to lectures!
- To access, click the drop-down
 ">" button beside each lecture

Stefan Nagy

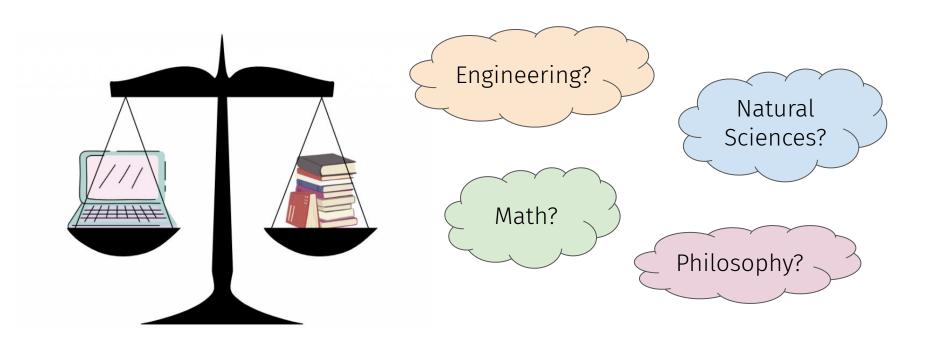
Free Online Textbooks

- We now make available several freely-distributed textbooks via the Wiki
 - Some textbook chapters are referenced as lecture-relevant Supplemental Content
 - Also totally optional—they are meant only as additional resources to help you learn

Recommended Textbooks	
Textbook	Author(s)
An Introduction to Computer Networks	Peter L Dordal
Computer Networks: A Systems Approach	Bruce Davie, Larry Peterson
Computer Systems Security: Planning for Success	Ryan Tolboom
Cryptography: An Introduction	Nigel Smart
Software Security: Principles, Policies, and Protection	Mathias Payer
The Joy of Cryptography	Mike Rosulek

Summary

Course website wiki, assignments, schedule, slides, office hours Piazza questions, discussion, announcements PollEverywhere lecture participation Canvas quizzes, project submission, course gradebook Instructor email (snagy@cs.utah.edu) administrative issues



Stefan Nagy

Questions?

What does Computer Science impact?

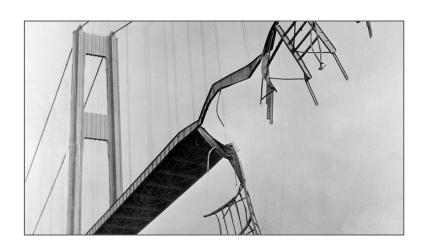
What does Computer Security impact?

Computers Nowadays...

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?

Computers Nowadays...

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?
 - One might try to throw another one off
 - One is probably trying to spy on another
 - One will bite you and steal your credit card



Computers Nowadays...

- ... are like wheelbarrows of orangutans
 - Think of every app, user, file as an orangutan
- What could go wrong?
 - One might try to throw another one off
 - One is probably trying to spy on another
 - One will bite you and steal your credit card
- Call to action: let's adjust our thinking based on the possibility of such risks
 - How we design new systems
 - How we permit user interaction
 - How we store sensitive information

What's the difference?

Reliability does not equal

Security

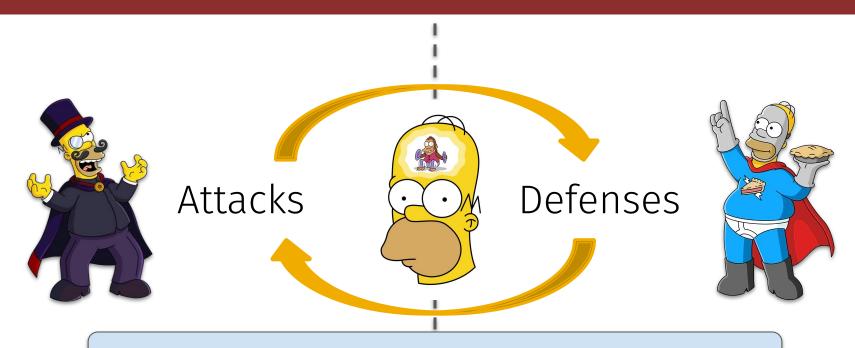
Attacks

Defenses

Attacks

Thinking like an attacker

- Understand techniques for how security can be circumvented
- Look for ways security can break,not why (you think) it won't



Thinking like a defender

- Know what you're defending,whom you're defending against
- Weigh benefits versus costs
- Embrace "rational paranoia"

Defenses

The Security Mindset: thinking as both the attacker and defender!

 Computer security studies how systems behave in the presence of an adversary

???

- Computer security studies how systems behave in the presence of an adversary
 - Independent / hobbyist hackers
 - "Script kiddies"
 - Cyber-criminal gangs
 - Nation-state government hackers
 - Disgruntled students (or professors)
- Definition: an intelligence that actively tries to cause the system to misbehave.

- Motives?
 - ????

- Degree of access?
 - ???

- Capabilities?
 - ???

Motives?

- Disruption
- Espionage
- Money

Degree of access?

- Physical access
- Root privileges

Capabilities?

- Denial of service
- Code execution

Attacks on Computer Systems

A hierarchy view

"The Attack"

Assault = recipe, vulnerabilities are ingredients

Level-2 Problem: "Weakness"

Factors that predispose systems to vulnerability

Level-1 Problem: "Vulnerability"

Specific errors that could be exploited in an assault.

Level-0 Problem: "The Attack"

Actual malicious attempt to cause harm.

Why study attacks?

Why?

Why study attacks?

- Identify vulnerabilities so they can be fixed
- Create incentives for vendors to be careful
- Learn about new classes of threats
 - Determine what we need to defend against
 - Help designers build stronger systems
 - Help users more accurately evaluate risk

- Look for the weakest links
 - What is easiest to attack
- Identify assumptions that the security depends on
 - Are any assumptions false?
 - Can you render them false?
- Think outside the box!
 - Don't be constrained by the system designer's worldview

- Look for the weakest links
 - What is easiest to attack
- Identify assumptions that the security depends on
 - Are any assumptions false?
 - Can you render them false?
- Think outside the box!
 - Don't be constrained by the system designer's worldview

Practice thinking as an attacker:

For **each system you interact with**, think about what it means for it to be **secure**, and **imagine how it could be exploited**

Exercise: name some security systems that you interact with in everyday life

65

- Exercise: name some security systems that you interact with in everyday life
- Example: the lock to Prof. Nagy's office
 - Breaking-in after hours to alter your grade?
 - Weakest links?
 - Assumptions?
 - Circumventing?

66

Thinking as a Defender

Security Policy

- What resources are we protecting?
- What properties are we enforcing?

Threat Model

- Who will attack us? Capabilities? Motivations?
- What types of attacks must we try to prevent?

Assessing Risk

- What are the system's weaknesses?
- How will successful attacks hurt us?

Assessing Likelihood

- Countermeasures
- Costs vs. benefits?
- Technical vs. nontechnical?

Thinking as a Defender

Security Policy

- What resources are we protecting?
- What properties are we enforcing?

Threat Model

- Who will attack us? Capabilities? Motivations?
- What types of attacks must we try to prevent?

Assessing Risk

- What are the system's weaknesses?
- How will successful attacks hurt us?

Assessing Likelihood

- Countermeasures
- Costs vs. benefits?
- Technical vs. nontechnical?

Rational paranoia:

Thinking **rigorously**, yet **realistically** about risk!

Security Policies

- What resources are we trying to protect?
 - ???

Security Policies

- What resources are we trying to protect?
 - Files
 - Programs
 - User data
 - NFTs?
- What properties are we trying to enforce?
 - ???

Security Policies

- What resources are we trying to protect?
 - Files
 - Programs
 - User data
 - NFTs?
- What properties are we trying to enforce?
 - Confidentiality
 - Integrity
 - Availability
 - Privacy
 - Authenticity

Threat Models

- Who are our adversaries?
 - Motives?
 - Capabilities?
 - Level of access?
- What types of attacks must we prevent?
 - Think like the attacker!
- Limits: kinds of attacks we need ignore?
 - Unrealistic versus unlikely

Assessing Risk

- Remember: <u>rational</u> paranoia
- How will a breach harm us?
 - Direct harm:
 - **????**

Assessing Risk

- Remember: <u>rational</u> paranoia
- How will a breach harm us?
 - Direct harm:
 - Money
 - Intellectual property
 - Physical safety
 - Indirect harm:
 - ???

Assessing Risk

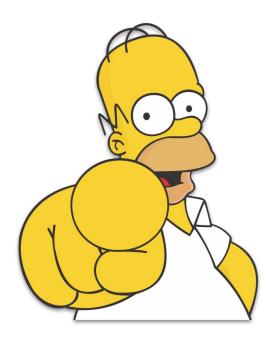
- Remember: <u>rational</u> paranoia
- How will a breach harm us?
 - Direct harm:
 - Money
 - Intellectual property
 - Physical safety
 - Indirect harm:
 - Reputation
 - Future business
 - Well being
- How likely are these harms?
 - Attempts vs. successful attacks?

Countermeasures

- Technical countermeasures
 - Bug fixes, more crypto, re-architecting, etc.

- Non-technical countermeasures
 - Law, policy (government, institutional)
 - Procedures, training, auditing, incentives, etc.

Costs of Security


- No security mechanism is free
- Direct costs:
 - Design, implementation, enforcement, false positives
- Indirect costs:
 - Lost productivity, added complexity, time to market
- Challenge is to rationally weigh costs vs. risk
 - Human psychology makes reasoning about high cost, low probability events very difficult

Class Exercise

Using a credit card safely?

- Assets?
- Adversaries?
- Risk assessment?
- Countermeasures?
- Defense costs/benefits?

Security through... obscurity?

Common mistakes:

- Convincing yourself that a system is already secure in its current form
- Convincing yourself a system is safe because attacker won't know XYZ

Security through... obscurity?

Common mistakes:

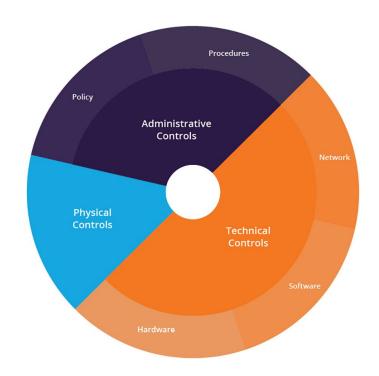
- Convincing yourself that a system is already secure in its current form
- Convincing yourself a system is safe because attacker won't know XYZ

Better approach:

- Limit key assumptions that security of your system depends upon
- Identify any components exposed to attackers and their weaknesses
- Assume attacker knows everything but a small bit of data (e.g., a key)

Other Defense Principles

Defense-in-Depth


- Multiple layers of safeguards
- Physical, technical, administrative

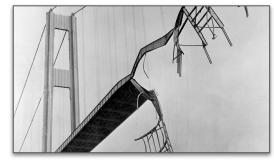
Component Diversity

- More moving parts = harder to attack
- Conversely, harder to secure

Maintainability

- Minimize maintainer workload
- Make fixes easy/fast to deploy

Testing Security


- Testing against requirements
 - How must the system behave?
 - What threats must be mitigated?
- Adversarial testing (my work)
 - Black-box testing
 - White-box testing
 - Gray-box testing
- Example: airport security

Red Team agents use disguises, ingenuity to expose TSA vulnerabilities

Learning from Failures

- ... a time-honored engineering practice!
 - Especially important in security
- Identifying causes of failures
 - Where, how, why
 - First step of fixing
- What can failures teach us?
 - New kinds of attacks
 - New kinds of defenses

Questions?

A Note on Ethics...

Laws and Ethics

- Don't be evil!
 - Ethics requires you to refrain from doing harm
 - Always respect privacy and property rights
 - Otherwise, you will fail the course (and worse)
- Federal/state laws criminalize computer intrusion, wiretapping, or other abuse
 - Computer Fraud and Abuse Act (CFAA)
 - You can be sued or go to jail
- University policies prohibit tampering with campus or other systems
 - You can/will be disciplined and even expelled

Questions?

Next time on CS 4440...

Python Tutorial and Course VM Setup

Bring your laptops... and pre-download your VM image!