Week 13: Lecture B

Software Reverse Engineering

Thursday, November 20, 2025




Announcements

Project 4: NetSec released
= Deadline: Thursday, December 4th by 11:59PM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

4 Project 4: Network Security

Deadline: Thursday, December 4 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki
¢ VM Setup and Troubleshooting

\ » Terminal Cheat Sheet

Table of Contents:

¢ Helpful Resources
* Introduction
* Objectives
» Start by reading this!
o Packet Traces
o Attack Template
o Wireshark
* Part 1: Defending Networks
o Password Cracking
o Port Scanning
> Anomalous Activity
o What to Submit
o Part 2: Attacking Networks
o Plaintext Credentials
o Encoded Credentials
o Accessed URLs
o Extra Credit: Transferred Files
> What to Submit

* Submission Instructions

J
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Interested in fuzzing?

Spring 2026: CS 5493/6493: Applied Software Security Testing

= Everything you'd ever want to know about fuzzing for finding security bugs!

= Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
= http://cs.utah.edu/~snagy/courses/cs5493/

CS 5493/6493: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security vulnerabilities in software.
Introductory fuzzing exercises will provide hands-on experience with industry-popular security tools such as AFL++ and AddressSanitizer,
culminating in a final project where you’ll work to hunt down, analyze, and report security bugs in a real-world application of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp over topics like software
security, systems programming, and C/C++.

Learning Outcomes: At the end of the course, students will be able to:

« Design, implement, and deploy automated testing techniques to improve vulnerability on large and complex software systems.
» Assess the effectiveness of automated testing techniques and identify why they are well- or ill-suited to specific codebases.

« Distill testing outcomes into actionable remediation information for developers.

« |dentify opportunities to adapt automated testing to emerging and/or unconventional classes of software or systems.

» Pinpoint testing obstacles and synthesize strategies to overcome them.

» Appreciate that testing underpins modern software quality assurance by discussing the advantages of proactive and post-deployment
software testing efforts.

SCHOOL OF COMPUTING
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http://users.cs.utah.edu/~snagy/courses/cs5493/

Save the date: 1-3PM on Wednesday, December 10

= CDA accommodations: schedule exam via CDA Portal ..,f e \ / A
High-level details (more to come): Q}}e
= One exam covering all course material THE

= Similar to project/quiz/lecture exercises o

Cheat Sheet

= One 8.5"x11” paper with handwritten/typed notes on both sides
= Suggestion: Don't just use someone else’s—you’ll learn better making your own!
= Suggestion: Don't just paste lecture slides—you’ll learn better by writing/typing it!

SCHOOL OF COMPUTING
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Practice Exam

Practice Exam released 4 N
= See Assignments page on the CS 4440 website s a0 Inducion to Computer Sy

Practice Exam

This practice exam is intended to help you prepare for the final exam. It does not cover all material
that will appear on the final. We recommend that you use this practice exam to supplement your
preparation, in addition to going over your lecture notes, quizzes, and programming projects.

1 . o o
Final lecture will serve as a review session e
benefit out of this exam review by treating it as if it were the real exam: you may refer to your

two-sided 8.5"x 11" cheat sheet, but allow yourself only 2 hours to complete the exam.

H M ° ? 1 The final lecture will in-class review sessi ing the solutions to this practi )
= Solutions discussed in-class only—don’t skip! Semton o i s il S o et e

1. Cryptography. Alice and Bob, two CS 4440 alumni, have been stranded on a desert island
for several weeks. Alice has built a hut on the beach, while Bob lives high in the forest
branches. They plan to communicate silently by tossing coconuts over the treeline.

Compounding Alice and Bob’s misfortune, on this island there also lives an intelligent, lit-
erate, and man-eating panther named Mallory. The pair can cooperate to warn each other
when they see the animal approaching each others’ shelters, but they fear that Mallory will
intercept or tamper with their messages in order to make them her next meal. Fortunately,
Alice and Bob each have an RSA key pair, and each knows the other’s public key.

(a) Design two protocols that leverage RSA, such that Alice can securely transmit a mes-
sage to Bob whilst ing (1) message iality and (2) message integrity.

o /

SCHOOL OF COMPUTING
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Practice Exam

To get the most out of this, treat it
just as you would the Final Exam

- ™
Last lecture (Thursday, Dec. 4th) will

go over the exam review solutions
- Y,

4 )
Solutions won’t be posted online.

(Reminder: attendance/participation
makes up 5% of your course grade)

.

SCHOOL OF COMPUTING
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End-of-semester Course Evals

| want your feedback!

= 3rd time teaching this course &
= Help me improve the class!

Due by December 15th
= https://scf.utah.edu
= Please please please!

HELP MEHELP YOU

SCHOOL OF COMPUTING
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https://scf.utah.edu/blue/

End-of-semester Course Evals

a )
If 85% of the class (122 of 143 students)

submits an eval, we will add 5 points of

extra credit to your Participation grades!
N /

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 8


https://scf.utah.edu/blue/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9



No Class or Office Hours Next Week




Last time on CS 4440...

Cyber-physical Systems &
Internet-of-Things Security




Cyber-physical Systems

What Cyber-physical Systems do you directly/indirectly interact with daily?

SCHOOL OF COMPUTING
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Cyber-physical Systems

What Cyber-physical Systems do you directly/indirectly interact with daily?

},\ ‘ ﬁi;i%iiﬂ‘:ﬁ:
Power Grid Telecommunication Critical Industry
SCHOOL OF COMPUTING Stefan Nagy 13
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Cyber-physical Systems

Why are Cyber-physical Systems so challenging to defend?

SCHOOL OF COMPUTING
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Cyber-physical Systems

Why are Cyber-physical Systems so challenging to defend?

§

WHO 1S HOMER?
MY NAMESIS 6UY INCOGNTTD,

i ¢
,,,,,

Legacy Components Unpatchable Systems Stealthy Attacks

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 15



CPS Attacks are Here to Stay

2010’s Stuxnet attack

HOW STUXNET WORKED

UPDATE FROM SOURCE 7
Bl-i-5-E  E
N 2
—
1. infection 2. search 3. update
Stuxnet enters a system viaa USB stick and Stuxnet then checks whether a given Ifthe system isn't a target,
proceeds to infect all machines running machine is part of the targeted indus- Stuxnet does nothing; if itis,
Microsoft Windows. By brandishing a digital trial control system made by Siemens. the worm attempts to
certificate that seems to show that it comes Such systems are deployed in Iran to access the Internet and
from a reliable company, the worm is able to run high-speed centrifuges that help download a more recent
evade automated-detection systems. to enrich nuclear fuel. version of itself.

4. compromise 5. control 6. deceive and destroy
The worm then compromises the Inthe beginning, Stuxnet spies on the Meanwhile, it provides false feed-
target system's logic controllers, operations of the targeted system. Then it back to outside controllers, ensur-
exploiting “zero day” vulnerabilities- uses the information it has gathered to ing that they won't know what's
software weaknesses that haven't take control of the centrifuges, making going wrong until it's too late to do
\ been identified by security experts. them spin themselves to failure. anything about it. /

SCHOOL OF COMPUTING
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CPS Attacks are Here to Stay

2010's Stuxnet attack... was just the tip of the iceberg

/FULLY OPERATIONAL: STUXNET 15 YEARS
LATER AND THE EVOLUTION OF CYBER
THREATS TO CRITICAL INFRASTRUCTURE.

JULY 22 - 10:00 AM - 1:00 PM

HOW STUXNET WORKED

UPDATE FROM SOURCE 7

ly Operational Stuxngt 15 Years Later & the Evolution of Cyber Threats to Critical Infrastructure.

1. infection 2. search 3. update

Stuxnet enters a system viaa USB stick and Stuxnet then checks whether a given I the system isn't a target,
proceeds to infect all machines running machine is part of the targeted indus- Stuxnet does nothing; if itis,
Microsoft Windows. By brandishing a digital trial control system made by Siemens. the worm attempts to
certificate that seems to show that it comes Such systems are deployed in Iran to access the Internet and
from a reliable company, the worm is able to run high-speed centrifuges that help download a more recent
evade automated-detection systems. to enrich nuclear fuel. version of itself.

THE COMMITTEE ON

HOMELAND

6. deceive and destroy

4. compromise 5. control

The worm then compromises the
target system’s logic controllers,
exploiting “zero day” vulnerabilities-

In the beginning, Stuxnet spies on the
operations of the targeted system. Then it
uses the information it has gathered to

Meanwhile, it provides false feed-
back to outside controllers, ensur-
ing that they won't know what's

SECURITY

CHAIRMAN MARK E. GREEN, MD

software weaknesses that haven't take control of the centrifuges, making going wrong until it's too late to do Watch on @Voilube
\ been identified by security experts. them spin themselves to failure. anything about it. /
SCHOOL OF COMPUTING
Stefan Nagy 17
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CPS Attacks are Here to Stay

US critical infrastructure remains
exposed as Congress confronts OT
cybersecurity gaps, fifteen years after
Stuxnet

JULY 22, 2025

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 18



Forthcoming Course Offerings

. - - ST LADUE , ]
Prof. Garcia's Course - e ]

returning Fall 2026

= Note course number
will now be CS 5464

CS 6963/5963: CYBER-PHYSICAL SYSTEMS (CPS) AND
INTERNET-OF-THINGS (I0T) SECURITY

INSTRUCTOR
Instructor: Luis Garcia Pre-requisites: CS 3505
Department: CS Credit Hours: 3.0
Office: MEB 3450 Semester: Fall 2024

E-mail: la.garcia@utah.edu

Communication & Review the PDF Syllabus: N/A
Office Hours: "Communication"
section below for more
information.

Teaching Assistant: Vatsal Goel

Email: vatsal.goel@utah.edu

SCHOOL OF COMPUTING
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This time on CS 4440...

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis

Structure Recovery
RE Challenges




About Me

Zao Yang

3rd year PhD student advised by Prof. Nagy

Research areas: fuzzing, binary analysis (today’s topic!)
Contact: zao.yang@utah.edu

SCHOOL OF COMPUTING
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How Software is Built

clang hello.c -0 hello

SCHOOL OF COMPUTING
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How Software is Built

clang hello.c -0 hello

. Executable
Compiler

Source File

SCHOOL OF COMPUTING
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How Software is Built

Preprocessor =———p Compiler ——p Linker ]
Source Code / N\ Binary

Executable
substitutes #include generates combines binary
directives with content binary machine code and
standard library of included files machine code connects function calls
header file ’
iostream |--- hello.cpp > »| hello.o g hello.exe
#include <iostream> ]
. cout = .. - COUTE = . bﬁmarY
object file
int main() { int main() {
std::cout <« std::cout <«
"Hello World\n"; "Hello World\n";
} }
SCHOOL OF COMPUTING Stefan Nagy 25
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How Software is Built

Source Code

standard library

header file
iostream |--- hello.cpp
- #include <iostream>
. cout = .
int main() {
std::cout <«
"Hello World\n";
}
SCHOOL OF COMPUTING
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How Software is Built

Preprocessor

substitutes #include
directives with content
of included files

\ 4

.. cout = ..

int main() {
std::cout <«
"Hello World\n";

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27



How Software is Built

Compiler

generates
binary
machine code

—>| hello.o

binary
object file

SCHOOL OF COMPUTING
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How Software is Built

Linker
N\ Binary
Executable

combines binary
machine code and
connects function calls

oo

SCHOOL OF COMPUTING
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How Software is Built

Binary
Executable

f \
2o
1

!

SCHOOL OF COMPUTING
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Closed-source Software

Examples?

W ﬂ Office <A NVIDIA
$2propbox @ < Outlook

== Windows 0S macOS .::II'S.éIC;.
Tl P NETGEAR

PlayStation.

SCHOOL OF COMPUTING
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Closed-source Software

L

Legacy software whose source code is lost

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH
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Auditing Open- versus Closed-source Code

Open Source:

Publicly-available source codebase
Achieves security by transparency

Semantic richness facilitates
high-performance, effective vetting

SCHOOL OF COMPUTING
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Auditing Open- versus Closed-source Code

Closed Source:

Distributed as a precompiled binary
Opaque to everyone but its developer

) = (|0}
el " |i{aog

Upwards of 10x slower security vetting
Forced to rely on crude techniques

34
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Auditing Open- versus Closed-source Code

€40z 1] Office €A NVIDIA
33 Dropbox € B4 Outlook

2@ Windows ©s macOS 'é',';é'(;'

oracie b NETGEAR

Solaris PlayStation

Global market size over $240 billion
85% contains critical vulnerabilities
89% of the most exploited software

SCHOOL OF COMPUTING
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Reverse Engineering (RE)

What is RE?

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUUU

“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so”

Stefan Nagy 36



Why do we care about RE?

Discovering bugs

Retrofitting fixes

Malware analysis

Right to repair!

SCHOOL OF COMPUTING
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RE Tasks

Disassembly

= 777

SCHOOL OF COMPUTING
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RE Tasks

o ( s ~N
00000003 4F dec edi
Dlsassembly 00000004 6A1lE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
00000008 0C12 or al,0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAO8EAS57B2BB1l jmp dword 0xbl2b:0x7ba58eal
o e 00000013 B114 mov cl,0x14
\_ J
Decompilation
= 77
SCHOOL OF COMPUTING Stefan Nagy 39
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RE Tasks

[ ( s ~N
00000003 4F dec edi
Dlsassembly 00000004 6A1lE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
dabl bl 00000008 0C12 oF al;0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAO8EAS57B2BB1l jmp dword 0xbl2b:0x7ba58eal
. . 00000013 B114 mov cl,0x14
D l \ :
ecompilation
H (1. . . ™
= Machine code to human 2 |int matn(veld)
4
readable source code 5| char local st [641;
; modified = 0;
9 gets(local_54);
e_ o 10 if (modified ==.0)”{
Rewrltl ng 3 puts("Try again?");
m D9? 51 el;jti("you have changed the \'modified\' variable");
}ES) return 0;
17 |}
0 J
SCHOOL OF COMPUTING Stefan Nagy 40
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RE Tasks

° e - N
00000003 4F dec edi
Dlsassembly 00000004 6A1lE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
dabl bl 00000008 0C12 or al,0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAQOBEA57B2BB1 jmp dword 0xbl2b:0x7ba58eal
o (00000013 B114 mov cl,0x14 )
Decompilation
H (5 - . N
= Machine code to human 2 int nain(void) (" Before After N
readable source code s | e local 54 [64]; ; Original Function ; Original Function
6| int modified; OriginalFunc: OriginalFunc:
; ditied = 0s first few jmp InterceptorFunc
5 get;klora{ 5:1); instructions OriginalFunc+N:
e 10 | if (modified == 0) {
Rewrltl ng S puts("Try again?"); . '
13| else ¢ H ;rampolll_neF ;_Z_'rampo:{neF
H H uts("you have change e \'modified\' variable"); rampoline-unc: rampolinerunc:
u Add mOf'e fU nCtlonallty E } ot BT R R NOGHTIRG i jmp OpriginaIFunc
16 return 0;
1 17 |} instructions
and rebuild executable i JAS o 4
SCHOOL OF COMPUTING Stefan Nagy 41
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Three Pillars of RE

Instruction Recovery

= Decode bytes to instructions
= Disambiguate code from data

Control Flow Recovery

= Intra-procedural execution flow
= |Inter-procedural execution flow

Program Structure Recovery

= |dentify program basic blocks
= Higher-level constructs (e.g., loops)

SCHOOL OF COMPUTING
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Pillars of RE:
Instruction Recovery

Stefan Nagy



What are they? MAXPS
MAXSD
MAXSS
MFENCE
MINPD
MINPS
MINSD
MINSS
MONITOR
MoV
MOV (1)
MOV (2)
MOVAPD
MOVAPS
MOVBE
MOVD
MOVDDUP

MOVDIRI
MOVDQ2Q

MOVDIR64B

Maximum of Packed Single-Precision Floating-Point Values
Return Maximum Scalar Double-Precision Floating-Point Value
Return Maximum Scalar Single-Precision Floating-Point Value
Memory Fence

Minimum of Packed Double-Precision Floating-Point Values
Minimum of Packed Single-Precision Floating-Point Values
Return Minimum Scalar Double-Precision Floating-Point Value
Return Minimum Scalar Single-Precision Floating-Point Value
Set Up Monitor Address

Move

Move to/from Control Registers

Move to/from Debug Registers

Move Aligned Packed Double-Precision Floating-Point Values
Move Aligned Packed Single-Precision Floating-Point Values
Move Data After Swapping Bytes

Move Doubleword/Move Quadword

Replicate Double FP Values

Move 64 Bytes as Direct Store

Move Doubleword as Direct Store

Move Quadword from XMM to MMX Technology Register

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy
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Recap: The CPU

: . . Instruction
State modified by assembly instructions Fetcher
= ADD, SUB, XOR, CMP, CALL, JMP, RET ‘
= And many more! [ Instruction |
""" . Decoder

Memory
Interface

Assembly instruction syntaxes
= AT&T = Source Destination
= Intel = Destination Source
= Example: MOV SRC, DST versus MOV DST, SRC

= This lecture: AT&T syntax

PP ———

P A

Registers memory

SCHOOL OF COMPUTING
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What are they?
= Operations that modify CPU state

Source = ???

X86 asm = ???

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

MAXPS
MAXSD
MAXSS
MFENCE
MINPD
MINPS
MINSD
MINSS
MONITOR
MoV
MOV (1)
MOV (2)
MOVAPD
MOVAPS
MOVBE
MOVD
MOVDDUP

MOVDIRI
MOVDQ2Q

MOVDIR64B

Maximum of Packed Single-Precision Floating-Point Values
Return Maximum Scalar Double-Precision Floating-Point Value
Return Maximum Scalar Single-Precision Floating-Point Value
Memory Fence

Minimum of Packed Double-Precision Floating-Point Values
Minimum of Packed Single-Precision Floating-Point Values
Return Minimum Scalar Double-Precision Floating-Point Value
Return Minimum Scalar Single-Precision Floating-Point Value
Set Up Monitor Address

Move

Move to/from Control Registers

Move to/from Debug Registers

Move Aligned Packed Double-Precision Floating-Point Values
Move Aligned Packed Single-Precision Floating-Point Values
Move Data After Swapping Bytes

Move Doubleword/Move Quadword

Replicate Double FP Values

Move 64 Bytes as Direct Store

Move Doubleword as Direct Store

Move Quadword from XMM to MMX Technology Register

Stefan Nagy
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Wh at a re th ey? MAXPS Maximum of Packed Single-Precision Floating-Point Values
. . MAXSD Return Maximum Scalar Double-Precision Floating-Point Value
= O p e ratl ons th at mo d Ify CPU State MAXSS Return Maximum Scalar Single-Precision Floating-Point Value
MFENCE Memory Fence
MINPD Minimum of Packed Double-Precision Floating-Point Values
source = h i gh - level | nstru Ct| ons MINPS Minimum of Packed Single-Precision Floating-Point Values
MINSD Return Minimum Scalar Double-Precision Floating-Point Value
u H uman-rea d a b le MINSS Return Minimum Scalar Single-Precision Floating-Point Value
MONITOR Set Up Monitor Address
MOV Move
— M M MOV (1) Move to/from Control Registers
x86 asm = low-level instructions oy o e
™ S omew h at h uman-rea d a b le MOVAPD Move Aligned Packed Double-Precision Floating-Point Values
MOVAPS Move Aligned Packed Single-Precision Floating-Point Values
MOVBE Move Data After Swapping Bytes
MOVD Move Doubleword/Move Quadword
. . MOVDDUP Replicate Double FP Values
Key to | n fe r r | n g W h at MOVDIR64B Move 64 Bytes as Direct Store
. . MOVDIRI Move Doubleword as Direct Store
t h e p rO g ra m | S d O | n g MOVDQ2Q Move Quadword from XMM to MMX Technology Register

SCHOOL OF COMPUTING
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Recovering Instructions

Goal: translate bytes into logical instructions

= Called instruction decoding
= Analogous to what CPU does

= General output: disassembly Machine code bytes Assembly language statements
foo:
B8 22 11 00 FF movl $SO0xFF001122, %eax
Instruction stream 01 CA addl %ecx, %edx
31 F6 xorl %esi, %esi
B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24 53 pushl %ebx
04 8D 34 48 39 C3 72 EB C3 8B 5C 24 04 movl 4(%esp), %ebx
8D 34 48 leal (%eax,%ecx,2), %esi
. 39 C3 cmpl %eax, %ebx
Read bytes from input executable oo EE inae foo
C3 retl
Group bytes Decode instructions

SCHOOL OF COMPUTING
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Instruction Recovery Techniques

Linear Sweep f .. . h
= Start decoding at binary entry Intmtmn: compilers lay code
= Attempt to decode all bytes sequentially for compactness
= Stop at end of .TEXT section \ /

Challenge: data within code

\ /

SCHOOL OF COMPUTING
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Instruction Recovery Techniques

Recursive Descent
= Follow all control-flow transfers
= jmp 0x100 - start decoding
instructions at address 9x100
= Stop when you’'ve covered all
possible control-flow paths

SCHOOL OF COMPUTING
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.

Intuition: following the logical
flow of execution reveals a lot

~

s

Vs

\

Challenge: indirect branches

~

/
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Instruction Recovery Techniques

Most modern RE adopts a combined
approach in addition to heuristics

SCHOOL OF COMPUTING
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CISC Architectures

Opcode

| Prefix }7 Opcode —{

}— Legacy Prefix

Variable-length instructions

= Eg,x86-32, x86-64 Byteoffset | 0 | 2 | 2 | 3 [ 4 [ 5| 6 | 7
cptoral B
Almost any byte sequence e | o
can be a valid instruction! o
x86_32 | Displacement .
optional
10 11 12 13 14 15 16 17
Being just one byte off can B
totally mess up decoding! required mmedare |

18 19 20 | 21 22 | 23 24 | 25

SCHOOL OF COMPUTING
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CISC Architectures

Example of byte offsets and possible decodings:

OxXOF Ox88 Ox52 OxOF O0x84 OXxEC

js oxffffffffec840f58

SCHOOL OF COMPUTING
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CISC Architectures

Example of byte offsets and possible decodings:

OxOF Ox88 Ox52 OxOF O0x84 OXxEC

mov BYTE PTR [rdx+0xf],dl
test ah, ch

SCHOOL OF COMPUTING
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CISC Architectures

Example of byte offsets and possible decodings:

OxXOF Ox88 Ox52 OxO0F 0x84 OxEC

add eax,0x40080120
in al,dx

SCHOOL OF COMPUTING
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Instruction Decoder Bugs

Results from Trail of Bits’ Mishegos fuzzer

567f2f39cb2a58654

./src/worker/bfd/bfd.so ./src/worker/capstone/capstone.so ./src/worker/xed/xed.so ./src/worker/zydis/zydis.so

26f267664d0f3817314aecdfod

56636f26{0f3a6f959066b1fd8c52

7f03ef0460f1104fe
52e26520ffda71fd5bc9e3090235f

6f2f3f00f3a6315cd
[Fo5T330055900954 732008 R05 7275
[PST33695590095a732b08805727509]

33e9559dd95a732b08805727509f3

[5e05590495a752b088057275091595]
765676547bedb69

[5500950752b06805 72 7503759507d0)

Pioszonisolasse |
4666566950f3a13f9f6

6467470f3875ae022ded4al517e90b4
f3f32666cd0f38b0c9alef83f720
ef066f0480f3a2904b7

7470f3875ae022dedal517e90bdch

664970f7a50db978a650a8288beel
f226£236458a49fb848d28

SCHOOL OF COMPUTING
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Code vs. Data

Some compilers tightly interweave data (e.g., bytes, values) within code
= Imprecision can create trickle-down errors in instruction recovery!
= Example from OpenSSL (one of the most popular HTTPS libraries):

popfq // original popfq // disassembled
.byte 0xf3,0xc3 repz retq

.Size AES_cbc_encrypt nop

.align 64 nop

.LAES_Te (bad)

.long 0xa56363c6 movslq -0x5b(%rbx),%esp
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Pillars of RE:
Control Flow Recovery
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Control Flow

What is it?

= 777
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Control Flow

What is it? — [ |

. print (x)
u How execution flows x > 5 [Basic Block 1]
. . l:int a = 1;
from one application / \ SIS TN
component to others \
print('x is big'") print('x is small') [Basic Block 2]
1:++b
Why do we care?
[Basic Block 3]
n ???
eeo o 1:int ¢ = 3;
2:int d = 4;
[Basic Block 4]
T: while (a < 5)
[Basic Block 5] [Basic Block 6]
e | {YIEs g
[EXIT]
SCHOOL OF COMPUTING Stefan Nagy 62
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What is it?
= How execution flows
from one application
component to others

Why do we care?
= Want to understand
the entire program!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Control Flow

[ENTRY]

|Basic Block 1]

l:int a = 1;
2:int b = 2;
T:if (b == 2)

print('x is big')

print('x is small')

[Basic Block 2]

1: ++b

[Basic Block 3]

1:int ¢ = 3;
2:int d = 4;

[Basic Block 4]

T:while (a < 5)

Stefan Nagy

N,

[Basic Block 5] [Basic Block 6]
3 l:int e = 5;
l:++a 2int f = 6

[EXIT]

63



Recovering Control Flow

Direct Edges [ } . .
= Jump/callafunction | JmMp Ox4001AB3 Target is pre-set statically
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Recovering Control Flow

Direct Edges [ \i | .
= Jump/callafunction | JMP Ox400TAB3 Target is pre-set statically
Indirect Edges D — \.

= Function pointers

* Transfertoaregister | call %eax; where? | [ Target found at runtime }
= Switch-case tables '
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Recovering Control Flow

Direct Edges [ } . .
= Jump/call afunction | JMP O@x4001AB3 ! Target is pre-set statically
Indirect Edges T \ \
= Transfertoaregister | c311 %eax: where? ! [ Target found at runtime
=  Function pointers ' i )
= Switch-case tables
(T \ A
“Pseudo” Edges . ret; goeswhere? | [ Necessary to recover all paths
= Post-call returns | " J
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Recovering Control Flow

Direct Edges

= Jump/call a function

Indirect Edges
= Transfer to a register
= Function pointers
= Switch-case tables

“Pseudo” Edges

= Post-call returns

Tail Calls

= Call at function’s end

SCHOOL OF COMPUTING
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________________________________

/

________________________________

\I e

AN

Necessary to recover all paths

~

/

________________________________

jmp &foo; call?

\ 4

AN

Expressed as jumps, not calls

~

/

Stefan Nagy
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Symbol Stripping

Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.

int addition(int numl1, int num2){
return numl+num2;
}

int main(){
int varl, var2;
printf("Enter number 1: ");
scanf("%d",&var1);
printf("Enter number 2: ");
scanf("%d",&var2);
int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;
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Debugging symbols: maps instructions in the compiled binary program to

Symbol Stripping

their corresponding variable, function, or line in the source code.
= Makes RE easy if you have symbols...

int addition(int numl1, int num2){
return numl+num2;
}

int main(){
int varl, var2;
printf("Enter number 1: ");
scanf("%d",&var1);
printf("Enter number 2: ");
scanf("%d",&var2);
int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;

$ objdump --syms example | grep .text

0000000000001090
00000000000B10CcH
0000000000001100
0000000000001140
0000000000001150
0000000000001060
0000000000001170

1F
1F
1F
1F
gF
gF
gF

.text
.text
.text
. text
.text
.text
.text

0000000000000000
0000000000000000
0000000000000000
0000000600000000
0000000000000018
0000000000000026
0000000000000085

deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
frame_dummy

addition

_start

main

SCHOOL OF COMPUTING
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Symbol Stripping

Debugging symbols: maps instructions in the compiled binary program to

their corresponding variable, function, or line in the source code.
= Makes RE easy if you have symbols... but often stripped from the binary!

int addition(int numl1, int num2){

return numl+num2;
; $ objdump --syms example

int main(){

int var1, var2; example: file format elf64-x86-64
printf("Enter number 1: ");

scanf("%d",&var1); SYMBOL TABLE:

printf("Enter number 2: "); no symbols

scanf("%d",&var2);

int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;
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Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= 777
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Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult
= Developers want to keep their intellectual property secret to just themselves!
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Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= Developers want to keep their intellectual property secret to just themselves!
= Example: opaque predicates - introduces “fake” control-flow that is confusing!
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Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= Developers want to keep their intellectual property secret to just themselves!
= Example: control-flow flattening > removes any recognizable flow ordering

-
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Pillars of RE:
Structure Recovery
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Program Structure

Why do we care?

= 777
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Program Structure

Why do we care?
= Know how the code’s
parts work together

(dec edi

push byte +0xle

mov bh, 0xb5

or al;0x12

push byte +0x4

jmp dword 0xbl2b:0x7bab58eal

| mov cl,0x14 )
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Program Structure

Why do we care?
= Know how the code’s
parts work together

(dec edi

push byte +0xle

mov bh, 0xb5

or al;0x12

push byte +0x4

jmp dword 0xbl2b:0x7bab58eal
mov cl,0x14

Examples:
= Basic Blocks
= Loop Types
= Recursion
= Jump Tables
= Functions

/

' .

[entering] [entering]

/

dooj

= Pt
e><|tllng] [exmng/ atc ]

Stefan Nagy 79
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Structure Recovery

Largely heuristic-based
= Construct-specific rules
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Largely heuristic-based
= Construct-specific rules

Structure Recovery

Basic Blocks:

= Start:

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Target of a jmp
Target of a call
Target of a ret

Endsina jmp
Endsinacall
Endsinaret

Stefan Nagy




Structure Recovery

Largely heuristic-based
= Construct-specific rules

Functions:
= Start:
= Targetofacall
= Target of a tail call
= A known prologue
= Adispatch table entry

= |ocationofaret
= Location of a tail call
= A known epilogue

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

add(first, second);

sub(first, second);

mult(first, second);

divide(first, second);

C-level Switch Table

push ebp
switch(choice) {
mov ebpl esp case 0 :
result
sub esp, N break;
case 1 :
result
PrOlOgue break;
case 2 :
result
break;
case 3 :
mov eSp, ebp result
pop ebp break;
ret
Epilogue

Stefan Nagy
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RE Tasks: Decompilation




Decompilation

Goal: ?2??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85



Decompilation

Goal: obtain semantically-equivalent source code from a compiled binary
Instruction Control Data Flow Structure Structure C Code
Recovery Analy5|s analysis Recovery Analysis Generation

SCHOOL OF COMPUTING
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Decompilation

Goal: obtain semantically-equivalent source code from a compiled binary
= In practice: really difficult with little guarantee of success (compilable or correct code)

Instruction Control Data Flow Structure Structure C Code
Recovery analysis Recovery Analysis Generation
Analy5|s

Will it re-compile? _ /
Will it run correctly? TEmmsT
Is it human readable?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 87



Try it yourself!

112d: push %ebp

112e: mov %esp, %ebp // mov src,dst
1131: mov %edi, $SOx14(%ebp)
1134: mov $0x0, SOx4(%ebp)
113b: cmp $0x1, S0x14(%ebp)
113f: jne 1148

1141: add 0x1337, $6x4(%ebp)
1148: mov $0x0, %eax

114d: pop %ebp

114e: ret

114f: nop

https://rev.fish/files/bar2022_keynote.pdf
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Try it yourself!

112d:
112e:
1131:
1134 :
113b:
113f:
1141 :
1148:
114d:
114e:
114f:

push %ebp

mov
mov
mov
cmp
jne
add
mov
pop
ret
nop

%esp, %ebp
%edi, $0x14(%ebp)
$0x0, $0x4 (%ebp)
$0x1, $0x14 (%ebp)
1148
0x1337, $S0x4 (%ebp)
SOx0, %eax

%ebp

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Variables:
ebp-0x4:
// mov src,dst ebp-0x14:
foo = 0; // 1134
if (bar == 1) { // 113b
// 1141
foo = foo + 0x1337;
}
return @; // 1148

https://rev.fish/files/bar2022_keynote.pdf

Stefan Nagy

foo
bar
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Popular Decompilers

Many decompilers available today (both commercial and open-source)
= Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)

e D

angr IDA Pro Binary Ninja Ghidra
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Different Decompilers = Different Out

Example: HelloWorld (ARM version) on DogBolt.org

angr BinaryNinja Ghidra Hex-Rays
9.2.38 3.3.3996 (e34a955e) 10.2.2 (9813cde2) 8.2.0.221215
1 int _initQ 1 int32_t _init(int32_t argl, int32_t arg2) 1 #include "out.h" 1~ /* This file was generated by the Hex-Rays decompile
2~ 2+ { 2 2 Copyright (c) 2007-2021 Hex-Rays <info@hex-rays. c:
3 unsigned int v@; // [bp-0x8] 3 return call_weak_fn(argl, arg2); 3 3
4 unsigned int v1; // [bp-0x4] 4 4 4 Detected compiler: GNU C++
5 unsigned int v2; // 1lr 5 5 int _init(EVP_PKEY_CTX *ctx) SH */
6 unsigned int v3; // r3 6 1int32_t sub_10308() 6 6
7 7v { 7 7 #include <defs.h>
8 vl = v2; 8 /* jump -> @ */ 8 int ivarl; 8
9 VO = v3; 9 9 9 #include <stdarg.h>
10 return call_weak_fn(Q); 10 10 iVarl = call_weak_fnQ); 10
119 1 11 - void __libc_start_main( 11 return iVarl; 11
12 12 int32_t (* main)(int32_t argc, char** argv, char| 12 12 /- e e
13 int _start(unsigned int a@) 13 char** ubp_av, void (* init)Q), void (* fini)Q, 13 13 // Function declarations
14~ { 14 void* stack_end) __noreturn 14 14
15 unsigned int v@; // [bp-0x8] 15~ { 15 15 int init_procQ;
16 unsigned int v1; // [bp-0x4] 16 /* tailcall */ 16 void __libc_start_main(void) 16 void sub_10308();
17 unsigned int v2; // [bp+0x@] 17 return __libc_start_main(main, argc, ubp_av, ini 17 17 // int __fastcall _libc_start_main(int (__fastcall *
18 18 } 18 18 // int getchar(void);
19 v2 = stack_base + 4; 19 19 _libc_start_mainQ); 19 // int puts(const char *s);
20 vl = a0; 20 int32_t getchar() 20 return; 20 // int _gmon_start__(void); weak
vl Vo = 0; 21~ { 21 21 // void abort(void);
22 __libc_start_main(); /* do not return */ 22 /* tailcall */ 22 22 void __noreturn start(void (*al)(void), int a2, int «
23 } 23 return getchar(); 23 23 int call_weak_fnQ);
24 24 24 24 char *deregister_tm_clones();
25 int sub_10390() 25 25 // WARNING: Unknown calling convention -- yet parame 25 __int64 register_tm_clones();
26~ { 26 int32_t puts(char const* str) 26 26 char *_do_global_dtors_aux();
27 abort(); /* do not return */ 27+ { 27 int getchar(void) 27 int __cdecl main(int argc, const char **argv, const .
28 } 28 /* tailcall */ 28 28 void term_proc();
29 29 return puts(str); 29 29
30 int call_weak_fnQ) 30 } 30 int ivarl; Bl 7/« - e e e e e e e e e
31w { 31 31 31 // Data declarations
32 return; 32 int32_t __gmon_start__Q) 32 iVarl = getcharQ); 32
33 __gmon_start__Q); 33~ { 33 return ivarl; 33 char _bss_start; // weak
34 return; 34 /* tailcall */ 34 34 // extern _UNKNOWN __gmon_start__; weak
358 1 35 return __gmon_start__Q); 35 35
36 36 36 36
37 int dereaister_tm_clones() 37 37 S0 //-===- L O
SCHOOL OF COMPUTING
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Our Research:
Fuzzing Decompilers’ Correctness




Challenges to Binary Decompilation
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How can we test decompilers?

Differential testing:
= Mutate source code
= Decompile, then recompile
= Compare programs’ output
= Non-equivalence = bug

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

( )

long g@
long *g1[1]
int g2
int *g3

\ /

~—

(int main ()
if (1g09) {
++92;

g3 = (int *)1;
if (g1[e] !'= (long *)1) {
g2 = 7UL
% (g1[@] !'= (long *)1 ?
1 : g1[@] == (long *)1);
} else {
g2 = 0;
}
}

\} /

Compare: g0, g1, g2, g3

Stefan Nagy

Globals
& Values

Mutated
Source

95



How can we test decompilers?

Differential testing:
= Mutate source code
= Decompile, then recompile
= Compare programs’ output
= Non-equivalence = bug

... butis that it?
= Compilers?
= Formats?
= Optimizations?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

( )

long g@
long *g1[1]
int g2
int *g3

\ /

~—

(int main ()
if (1g09) {
++92;

g3 = (int *)1;
if (g1[e] !'= (long *)1) {
g2 = 7UL
% (g1[@] !'= (long *)1 ?
1 : g1[@] == (long *)1);
} else {
g2 = 0;
}
}

\} /

Compare: g0, g1, g2, g3

Stefan Nagy
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How can we test decompilers?

-

.

Challenge: How to systematically explore all factors—and
combinations thereof—uniquely influencing binary code?

~

/

SITY OF UTAH

L OF COMPUTING

SCHOO
UNIVER

Stefan Nagy
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Our Approach: Mutate Everything

p N 4
PE32 o\ v -falign-functions
7 M v -falign-jumps _) J —)
- (WlndOWS) Visual Studio X C
\ y, v -fauto-inc-dec —_—
» Mach-O (g ) v -fcaller-saves Decompile Binary, Fix Syntax, and Recompile Binary
: 3 + ac : X \ J
' (MacOs) ’ .
: i ~—
Mutated Compiler & Executable Format Selection —  Mutated Opts Set
\ J
p 2

01. void func_1 (){ 01. void func_1 (){

02. long vl = 1234567; &) 02. long vl = @OxFFFFF; I . > " . " I
03. goto LABEL_SWITCH; 3 3. goto LABEL_BRANCH; Differential Testing via State Equivalence
04. LABEL_BRANCH: . @4. LABEL_BRANCH: ~ N
05.  if (vl == 123) libClang 05.  if (vl <= 123) _
06. vi—; AST API 06. vi-—; Orig Dec
07. LABEL SWITCH: [\ CREEn 07. LABEL_SWITCH:
8.  switch(v1){ : . 08.  switch(13){ v B Souwos |
09. case 13: \/ 09. case 13: v2 X 9 » | Compiler |
1(; . V1++; Insert Loop Break }? . viFE=tivi%3y; v3 ‘/ OrtFlags
/ Update Data Value o
Original Source Source-level Mutators Mutated Source Examine Data State Divergences and Minimize PoC
\ J . J
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SCHOO
UNIVER

Our Approach: Mutate Everything

.

Results: 46 new decompilation bugs found across 7
mainstream free and commercially-sold decompilers

~

/

L OF COMPUTING
SITY OF UTAH

Stefan Nagy
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Some Interesting Decompilation Bugs We've Found

#1: Erroneous recovery of floating-point data as integers
=  Affects Angr, Binary Ninja, and Reko

1 movsd xmmO, [rbp]; 1 int64_t vl =
2  double vO = 1.0; 2  0x3FFO000000000000;
(a) Original (b) Decompiled
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Some Interesting Decompilation Bugs We've Found

#2: Mis-handling of Mach-0 (MacOS) and ELF (Linux) calling conventions
= Affects Reko

mov r8, 2z mov rdi, x

mov rdx, y mov rsi, y

mov rcx, X mov rdx, Zz

=W DN =
=W DN =

func(x, y, z); func(z, y, x);

(a) PE convention & code.  (b) Mach-O & ELF decompiled.
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Some Interesting Decompilation Bugs We've Found

#3: Erroneous recovery of 1 int var = O; 1 int var = 0;
switch-case case lOgiC 2 switch(var){ 2 if (var == 2)
. L. 3 case 0: Reached? 3 o 5
= Affects Binary Ninja 4 N 4}
. 5 break; 5 else{
Result: completely different 6 case 1: 6 if (var == 0) Reached?
execution paths at runtime! |’ i VLSRR Y
) i 8 case 2: 8 if (var == 1)
= Deemed a high-severity bug 9 9
= Since found other instances 10 default: 10 if (var > 2)4
11 idx = 0; X 11 idx = O; v
12 break; 12 }
15} (a) Original 13} (b) Decompiled
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Some Interesting Decompilation Bugs We've Found

BINARY NINJA BLOG
RESTRUCTURING THE BINARY NINJA DECOMPILER

2 Rusty Wagner @ 2024-06-19 ®reversing, decompiler

For the upcoming Binary Ninja 4.1, we will be releasing a new implementation of our decompiler’s control flow recovery. You can try it today
by switching to the development channel and updating to the latest build. It isn't fully optimized yet and may produce non-optimal results in
some cases, but there should already be improvements in readability of the output, including a reduction in nesting depth and a significant
reduction in the complexity of conditional expressions.

This new implementation aims to improve the readability of the decompiler output while simultaneously improving accuracy. It also aims to
significantly improve maintainability, allowing us to iterate on our decompiler faster. We have additionally added a new suite of tests to
allow us to make changes to the decompiler and have more confidence that the changes haven't caused regressions in accuracy.

FOOTNOTES / CREDITS

The following resources may be helpful for understanding additional approaches to decompilation, provided motivating examples, or
directly inspired work described here. Additionally, one of the primary motivations for this improvement was a privately reported
decompilation flaw from Zao Yang and Dr. Stefan Nagy of the FUTURES?® Lab. Keep an eye on their forthcoming research and we're grateful

for their notification!

https://binary.ninja/2024/06/19/restructuring-the-decompiler.html
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Supplemental Content: Domain-specific RE

Dr. Zhigiang Lin’s
keynote at BAR'23

Application: Egg Hunt in Tesla Infotainment

Tesla Back to the Future
Easter Egg

December 1, 2020

LOtS Of COO'. bugs ! : espd e
- TeSla InfOtaI n ment » Do they raise security concerns?

km) of range. Then simply touch the ba.
I ” . ) ) )
u SU per Ap pS ocaio » How to systematically identify them?

Tesla: Mario Kart's Rainbow » Coverage-based fuzzing (emulation
u An d m 0 re! Road / SNL Easter Egg requirej) e (

» Input validation analysis on Qt binaries

Check it out!

(1D =< I - S i I |

BAR 2023 Keynote #1 - Unlocking the Potential of Domain Aware Binary Analysis in the Era of loT

a NP?S ?yrr:posmm @ 1| P > Share 4 Download & clip [] save
G) 87K subscribers
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Next time on CS 4440...

Today’s Security Ecosystem
Bug Bounties, CTF Competitions
Career Paths in Cyber Security




