
Stefan Nagy

Week 13: Lecture B
Software Reverse Engineering

Thursday, November 20, 2025

1

Stefan Nagy

Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 4th by 11:59PM

2

Stefan Nagy

Interested in fuzzing?

￭ Spring 2026: CS 5493/6493: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ http://cs.utah.edu/~snagy/courses/cs5493/

3

http://users.cs.utah.edu/~snagy/courses/cs5493/

Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Wednesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Cheat Sheet
￭ One 8.5”x11” paper with handwritten/typed notes on both sides
￭ Suggestion: Don’t just use someone else’s—you’ll learn better making your own!
￭ Suggestion: Don’t just paste lecture slides—you’ll learn better by writing/typing it!

4

Stefan Nagy

Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!

5

Stefan Nagy

Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!

6

Last lecture (Thursday, Dec. 4th) will
go over the exam review solutions

Solutions won’t be posted online.
(Reminder: attendance/participation
makes up 5% of your course grade)

To get the most out of this, treat it
just as you would the Final Exam

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 15th
￭ https://scf.utah.edu
￭ Please please please!

7

https://scf.utah.edu/blue/

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 19th
￭ https://scf.utah.edu
￭ Please please please!

8

If 85% of the class (122 of 143 students)
submits an eval, we will add 5 points of
extra credit to your Participation grades!

https://scf.utah.edu/blue/

Stefan Nagy

Questions?

9

Stefan Nagy

No Class or Office Hours Next Week

10

Stefan Nagy

Last time on CS 4440…

11

Cyber-physical Systems &
Internet-of-Things Security

Stefan Nagy

￭ What Cyber-physical Systems do you directly/indirectly interact with daily?

Cyber-physical Systems

12

Stefan Nagy

￭ What Cyber-physical Systems do you directly/indirectly interact with daily?

Cyber-physical Systems

13

Power Grid Telecommunication Critical Industry

Stefan Nagy

Cyber-physical Systems

￭ Why are Cyber-physical Systems so challenging to defend?

14

Stefan Nagy

Cyber-physical Systems

￭ Why are Cyber-physical Systems so challenging to defend?

15

Legacy Components Unpatchable Systems Stealthy Attacks

Stefan Nagy

CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack

16

Stefan Nagy

CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack… was just the tip of the iceberg

17

Stefan Nagy

CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack… was just the tip of the iceberg

18

Stefan Nagy

Forthcoming Course Offerings

￭ Prof. Garcia’s Course
returning Fall 2026
￭ Note course number

will now be CS 5464

19

Stefan Nagy

Questions?

20

Stefan Nagy

This time on CS 4440…

21

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges

Stefan Nagy

About Me

￭ Zao Yang
￭ 3rd year PhD student advised by Prof. Nagy
￭ Research areas: fuzzing, binary analysis (today’s topic!)
￭ Contact: zao.yang@utah.edu

22

Stefan Nagy

How Software is Built

￭ clang hello.c -o hello

23

Stefan Nagy

How Software is Built

￭ clang hello.c -o hello

24

Compiler
Source File

Executable

Stefan Nagy

How Software is Built

25

Stefan Nagy

How Software is Built

26

Stefan Nagy

How Software is Built

27

Stefan Nagy

How Software is Built

28

Stefan Nagy

How Software is Built

29

Stefan Nagy

How Software is Built

30

Today’s
Focus

Stefan Nagy

Closed-source Software

￭ Examples?

31

Stefan Nagy

Closed-source Software

￭ Examples?

32

Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost

Stefan Nagy

Auditing Open- versus Closed-source Code

33

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates
high-performance, effective vetting

Open Source:

Stefan Nagy

Auditing Open- versus Closed-source Code

34

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates
high-performance, effective vetting

Open Source:
▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:

Stefan Nagy

Auditing Open- versus Closed-source Code

35

▪ Global market size over $240 billion
▪ 85% contains critical vulnerabilities
▪ 89% of the most exploited software

▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:

Stefan Nagy

Reverse Engineering (RE)

￭ What is RE?

36

“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so.”

Stefan Nagy

Why do we care about RE?

￭ Discovering bugs

￭ Retrofitting fixes

￭ Malware analysis

￭ Right to repair!

37

Stefan Nagy

RE Tasks

￭ Disassembly
￭ ???

38

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ ???

39

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ Machine code to human

readable source code

￭ Rewriting
￭ ???

40

Stefan Nagy

RE Tasks

￭ Disassembly
￭ Machine code to human

readable assembly

￭ Decompilation
￭ Machine code to human

readable source code

￭ Rewriting
￭ Add more functionality

and rebuild executable

41

Stefan Nagy

Three Pillars of RE

1. Instruction Recovery
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)

42

Stefan Nagy

Questions?

43

Stefan Nagy

Pillars of RE:
Instruction Recovery

44

Stefan Nagy

Instructions

￭ What are they?

45

Stefan Nagy

Recap: The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax

46

Stefan Nagy

Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = ???

￭ x86 asm = ???

47

Stefan Nagy

Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = high-level instructions
￭ Human-readable

￭ x86 asm = low-level instructions
￭ Somewhat human-readable

48

Key to inferring what
the program is doing

Stefan Nagy

Recovering Instructions

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly

49

Read bytes from input executable

Group bytes Decode instructions

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

50

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding

instructions at address 0x100
￭ Stop when you’ve covered all

possible control-flow paths

51

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Intuition: following the logical
flow of execution reveals a lot

Challenge: indirect branches

Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding

instructions at address 0x100
￭ Stop when you’ve covered all

possible control-flow paths

52

Intuition: compilers lay code
sequentially for compactness

Challenge: data within code

Intuition: following the logical
flow of execution reveals a lot

Challenge: indirect branches

Most modern RE adopts a combined
approach in addition to heuristics

Stefan Nagy

CISC Architectures

￭ Variable-length instructions
￭ E.g., x86-32, x86-64

￭ Almost any byte sequence
can be a valid instruction!

￭ Being just one byte off can
totally mess up decoding!

53

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

54

js 0xffffffffec840f58

0x0F 0x88 0x52 0x0F 0x84 0xEC

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

55

mov BYTE PTR [rdx+0xf],dl
test ah,ch

0x0F 0x88 0x52 0x0F 0x84 0xEC

Stefan Nagy

CISC Architectures

￭ Example of byte offsets and possible decodings:

56

0x0F 0x88 0x52 0x0F 0x84 0xEC

add eax,0x40080f20
in al,dx

Stefan Nagy

Instruction Decoder Bugs

￭ Results from Trail of Bits’ Mishegos fuzzer:

57

Stefan Nagy

Code vs. Data

￭ Some compilers tightly interweave data (e.g., bytes, values) within code
￭ Imprecision can create trickle-down errors in instruction recovery!
￭ Example from OpenSSL (one of the most popular HTTPS libraries):

58

popfq // original
.byte 0xf3,0xc3
.size AES_cbc_encrypt
.align 64
.LAES_Te
.long 0xa56363c6

popfq // disassembled
repz retq
nop
nop
(bad)
movslq -0x5b(%rbx),%esp

Stefan Nagy

Questions?

59

Stefan Nagy

Pillars of RE:
Control Flow Recovery

60

Stefan Nagy

Control Flow

￭ What is it?
￭ ???

61

Stefan Nagy

Control Flow

￭ What is it?
￭ How execution flows

from one application
component to others

￭ Why do we care?
￭ ???

62

Stefan Nagy

Control Flow

￭ What is it?
￭ How execution flows

from one application
component to others

￭ Why do we care?
￭ Want to understand

the entire program!

63

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

64

jmp 0x4001AB3 Target is pre-set statically

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

65

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

66

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?

Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end

67

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.

68

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols…

69

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

$ objdump --syms example | grep .text
0000000000001090 l F .text 0000000000000000 deregister_tm_clones
00000000000010c0 l F .text 0000000000000000 register_tm_clones
0000000000001100 l F .text 0000000000000000 __do_global_dtors_aux
0000000000001140 l F .text 0000000000000000 frame_dummy
0000000000001150 g F .text 0000000000000018 addition
0000000000001060 g F .text 0000000000000026 _start
0000000000001170 g F .text 0000000000000085 main

Stefan Nagy

Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… but often stripped from the binary!

70

int addition(int num1, int num2){
 return num1+num2;
}

int main(){
 int var1, var2;
 printf("Enter number 1: ");
 scanf("%d",&var1);
 printf("Enter number 2: ");
 scanf("%d",&var2);
 int res = addition(var1, var2);
 printf ("Output: %d", res);
 return 0;
}

$ objdump --syms example

example: file format elf64-x86-64

SYMBOL TABLE:
no symbols

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ ???

71

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!

72

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: opaque predicates → introduces “fake” control-flow that is confusing!

73

Stefan Nagy

Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: control-flow flattening → removes any recognizable flow ordering

74

Stefan Nagy

Questions?

75

Stefan Nagy

Pillars of RE:
Structure Recovery

76

Stefan Nagy

Program Structure

￭ Why do we care?
￭ ???

77

Stefan Nagy

Program Structure

￭ Why do we care?
￭ Know how the code’s

parts work together

78

Stefan Nagy

Program Structure

￭ Why do we care?
￭ Know how the code’s

parts work together

￭ Examples:
￭ Basic Blocks
￭ Loop Types
￭ Recursion
￭ Jump Tables
￭ Functions

79

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

80

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Basic Blocks:
￭ Start:

￭ Target of a jmp
￭ Target of a call
￭ Target of a ret

￭ End:
￭ Ends in a jmp
￭ Ends in a call
￭ Ends in a ret

81

Stefan Nagy

Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions:
￭ Start:

￭ Target of a call
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:
￭ Location of a ret
￭ Location of a tail call
￭ A known epilogue

82

Prologue

Epilogue

C-level Switch Table

Stefan Nagy

Questions?

83

Stefan Nagy

RE Tasks: Decompilation

84

Stefan Nagy

Decompilation

￭ Goal: ???

85

Stefan Nagy

Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary

86

Control
Flow

Analysis

Data Flow
analysis

Structure
Recovery

Structure
Analysis

C Code
Generation

Instruction
Recovery

Stefan Nagy

Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary
￭ In practice: really difficult with little guarantee of success (compilable or correct code)

87

Control
Flow

Analysis

Data Flow
analysis

Structure
Recovery

Structure
Analysis

C Code
Generation

Instruction
Recovery

Will it re-compile?
Will it run correctly?

Is it human readable?

Stefan Nagy

Try it yourself!

88

112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

Stefan Nagy

Try it yourself!

89

112d: push %ebp
112e: mov %esp,%ebp // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

112d

1148

1141

foo = 0; // 1134
if (bar == 1) { // 113b

// 1141
foo = foo + 0x1337;

}
return 0; // 1148

Variables:
ebp-0x4: foo
ebp-0x14: bar

Stefan Nagy

Popular Decompilers

￭ Many decompilers available today (both commercial and open-source)
￭ Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)

90

angr IDA Pro Binary Ninja Ghidra

Stefan Nagy

Different Decompilers = Different Outputs

￭ Example: HelloWorld (ARM version) on DogBolt.org

91

Stefan Nagy

Questions?

92

Stefan Nagy

Our Research:
Fuzzing Decompilers’ Correctness

93

Stefan Nagy

Challenges to Binary Decompilation

94

Accurate Decompilation →

Source Code
Optimizations

Binary Formats
Obfuscations

↓

Stefan Nagy

How can we test decompilers?

￭ Differential testing:
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

95

long g0 = 0;
long *g1[1] = {&g0};
int g2 = 1;
int *g3 = &g2;

Mutated
Source

Globals
& Values

Compare: g0, g1, g2, g3

int main () {
 if (!g0) {
 ++g2;
 g3 = (int *)1;
 if (g1[0] != (long *)1) {
 g2 = 7UL

 % (g1[0] != (long *)1 ?
 1 : g1[0] == (long *)1);

 } else {
 g2 = 0;
 }
 }
}

Stefan Nagy

How can we test decompilers?

￭ Differential testing:
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

￭ … but is that it?
￭ Compilers?
￭ Formats?
￭ Optimizations?

96

long g0 = 0;
long *g1[1] = {&g0};
int g2 = 1;
int *g3 = &g2;

Mutated
Source

Globals
& Values

Compare: g0, g1, g2, g3

int main () {
 if (!g0) {
 ++g2;
 g3 = (int *)1;
 if (g1[0] != (long *)1) {
 g2 = 7UL

 % (g1[0] != (long *)1 ?
 1 : g1[0] == (long *)1);

 } else {
 g2 = 0;
 }
 }
}

Stefan Nagy

How can we test decompilers?

￭ Differential testing:
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

￭ … but is that it?
￭ Compilers?
￭ Formats?
￭ Optimizations?

97

long g0 = 0;
long *g1[1] = {&g0};
int g2 = 1;
int *g3 = &g2;

Mutated
Source

Globals
& Values

Compare: g0, g1, g2, g3

int main () {
 if (!g0) {
 ++g2;
 g3 = (int *)1;
 if (g1[0] != (long *)1) {
 g2 = 7UL

 % (g1[0] != (long *)1 ?
 1 : g1[0] == (long *)1);

 } else {
 g2 = 0;
 }
 }
}

Challenge: How to systematically explore all factors—and
combinations thereof—uniquely influencing binary code?

Stefan Nagy

Our Approach: Mutate Everything

98

Stefan Nagy

Our Approach: Mutate Everything

99

Results: 46 new decompilation bugs found across 7
mainstream free and commercially-sold decompilers

Stefan Nagy

Some Interesting Decompilation Bugs We’ve Found

￭ #1: Erroneous recovery of floating-point data as integers
￭ Affects Angr, Binary Ninja, and Reko

100

Stefan Nagy

Some Interesting Decompilation Bugs We’ve Found

￭ #2: Mis-handling of Mach-O (MacOS) and ELF (Linux) calling conventions
￭ Affects Reko

101

Stefan Nagy

Some Interesting Decompilation Bugs We’ve Found

￭ #3: Erroneous recovery of
switch-case case logic
￭ Affects Binary Ninja

￭ Result: completely different
execution paths at runtime!
￭ Deemed a high-severity bug
￭ Since found other instances

102

Stefan Nagy

Some Interesting Decompilation Bugs We’ve Found

￭ #3: Erroneous recovery of
switch-case case logic
￭ Affects Binary Ninja

￭ Result: completely different
execution paths at runtime!
￭ Deemed a high-severity bug
￭ Since found other instances

103

https://binary.ninja/2024/06/19/restructuring-the-decompiler.html

Stefan Nagy

Supplemental Content: Domain-specific RE

￭ Dr. Zhiqiang Lin’s
keynote at BAR’23

￭ Lots of cool bugs!
￭ Tesla Infotainment
￭ “Super Apps”
￭ And more!

￭ Check it out!

104

Stefan Nagy

Next time on CS 4440…

105

Today’s Security Ecosystem
Bug Bounties, CTF Competitions
Career Paths in Cyber Security

