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Week 13: Lecture B 
Software Reverse Engineering

Thursday, November 20, 2025
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Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 4th by 11:59PM
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Interested in fuzzing?

￭ Spring 2026: CS 5493/6493: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ http://cs.utah.edu/~snagy/courses/cs5493/ 
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http://users.cs.utah.edu/~snagy/courses/cs5493/
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Final Exam

￭ Save the date: 1–3PM on Wednesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Cheat Sheet
￭ One 8.5”x11” paper with handwritten/typed notes on both sides
￭ Suggestion: Don’t just use someone else’s—you’ll learn better making your own!
￭ Suggestion: Don’t just paste lecture slides—you’ll learn better by writing/typing it!
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Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!
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Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!
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Last lecture (Thursday, Dec. 4th) will 
go over the exam review solutions

Solutions won’t be posted online. 
(Reminder: attendance/participation 
makes up 5% of your course grade)

To get the most out of this, treat it 
just as you would the Final Exam
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End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 15th
￭ https://scf.utah.edu
￭ Please please please!
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https://scf.utah.edu/blue/
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End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 19th
￭ https://scf.utah.edu
￭ Please please please!
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If 85% of the class (122 of 143 students) 
submits an eval, we will add 5 points of 
extra credit to your Participation grades! 

https://scf.utah.edu/blue/


Stefan Nagy

Questions?
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No Class or Office Hours Next Week
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Last time on CS 4440…

11

Cyber-physical Systems & 
Internet-of-Things Security
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￭ What Cyber-physical Systems do you directly/indirectly interact with daily?

Cyber-physical Systems
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￭ What Cyber-physical Systems do you directly/indirectly interact with daily?

Cyber-physical Systems
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Power Grid Telecommunication Critical Industry
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Cyber-physical Systems

￭ Why are Cyber-physical Systems so challenging to defend?
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Cyber-physical Systems

￭ Why are Cyber-physical Systems so challenging to defend?
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Legacy Components Unpatchable Systems Stealthy Attacks
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CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack 
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CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack… was just the tip of the iceberg
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CPS Attacks are Here to Stay

￭ 2010’s Stuxnet attack… was just the tip of the iceberg
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Forthcoming Course Offerings

￭ Prof. Garcia’s Course 
returning Fall 2026
￭ Note course number 

will now be CS 5464
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Questions?
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This time on CS 4440…

21

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges
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About Me

￭ Zao Yang 
￭ 3rd year PhD student advised by Prof. Nagy
￭ Research areas: fuzzing, binary analysis (today’s topic!)
￭ Contact: zao.yang@utah.edu
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How Software is Built

￭ clang hello.c -o hello 
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How Software is Built

￭ clang hello.c -o hello 
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Compiler
Source File

Executable
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How Software is Built
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How Software is Built
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How Software is Built
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How Software is Built
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How Software is Built
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How Software is Built
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Today’s 
Focus
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Closed-source Software

￭ Examples?
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Closed-source Software

￭ Examples?
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Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost
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Auditing Open- versus Closed-source Code

33

▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates 
high-performance, effective vetting

Open Source:
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Auditing Open- versus Closed-source Code
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▪ Publicly-available source codebase
▪ Achieves security by transparency

▪ Semantic richness facilitates 
high-performance, effective vetting

Open Source:
▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting
▪ Forced to rely on crude techniques

Closed Source:
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Auditing Open- versus Closed-source Code

35

▪ Global market size over $240 billion
▪ 85% contains critical vulnerabilities
▪ 89% of the most exploited software

▪ Distributed as a precompiled binary
▪ Opaque to everyone but its developer

▪ Upwards of 10x slower security vetting 
▪ Forced to rely on crude techniques

Closed Source:
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Reverse Engineering (RE)

￭ What is RE?

36

“A process or method through which one 
attempts to understand through deductive 
reasoning how a previously made device, 
process, system, or piece of software 
accomplishes a task with very little (if any) 
insight into exactly how it does so.”
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Why do we care about RE?

￭ Discovering bugs

￭ Retrofitting fixes

￭ Malware analysis

￭ Right to repair!
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RE Tasks

￭ Disassembly
￭ ??? 
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ ???
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ Machine code to human 

readable source code

￭ Rewriting
￭ ??? 
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RE Tasks

￭ Disassembly
￭ Machine code to human 

readable assembly

￭ Decompilation
￭ Machine code to human 

readable source code

￭ Rewriting
￭ Add more functionality 

and rebuild executable 
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Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery 
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery 
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)
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Questions?
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Pillars of RE: 
Instruction Recovery
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Instructions

￭ What are they?
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Recap: The CPU

￭ State modified by assembly instructions
￭ ADD, SUB, XOR, CMP, CALL, JMP, RET
￭ And many more!

￭ Assembly instruction syntaxes
￭ AT&T = Instruction Source Destination
￭ Intel = Instruction Destination Source 
￭ Example: MOV SRC, DST versus MOV DST, SRC
￭ This lecture: AT&T syntax
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Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = ???

￭ x86 asm = ???
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Instructions

￭ What are they?
￭ Operations that modify CPU state

￭ Source = high-level instructions
￭ Human-readable

￭ x86 asm = low-level instructions
￭ Somewhat human-readable
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Key to inferring what 
the program is doing
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Recovering Instructions

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly
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Read bytes from input executable

Group bytes Decode instructions
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Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

50

Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code



Stefan Nagy

Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding 

instructions at address 0x100
￭ Stop when you’ve covered all 

possible control-flow paths

51

Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code

Intuition: following the logical 
flow of execution reveals a lot

Challenge: indirect branches
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Instruction Recovery Techniques

￭ Linear Sweep
￭ Start decoding at binary entry
￭ Attempt to decode all bytes
￭ Stop at end of .TEXT section

￭ Recursive Descent
￭ Follow all control-flow transfers
￭ jmp 0x100 → start decoding 

instructions at address 0x100
￭ Stop when you’ve covered all 

possible control-flow paths
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Intuition: compilers lay code 
sequentially for compactness

Challenge: data within code

Intuition: following the logical 
flow of execution reveals a lot

Challenge: indirect branches

Most modern RE adopts a combined 
approach in addition to heuristics
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CISC Architectures

￭ Variable-length instructions
￭ E.g., x86-32, x86-64

￭ Almost any byte sequence 
can be a valid instruction!

￭ Being just one byte off can 
totally mess up decoding!
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CISC Architectures

￭ Example of byte offsets and possible decodings:
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js     0xffffffffec840f58

0x0F 0x88 0x52 0x0F 0x84 0xEC
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CISC Architectures

￭ Example of byte offsets and possible decodings:
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mov    BYTE PTR [rdx+0xf],dl
test   ah,ch

0x0F 0x88 0x52 0x0F 0x84 0xEC
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CISC Architectures

￭ Example of byte offsets and possible decodings:
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0x0F 0x88 0x52 0x0F 0x84 0xEC

add    eax,0x40080f20
in     al,dx
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Instruction Decoder Bugs

￭ Results from Trail of Bits’ Mishegos fuzzer:
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Code vs. Data

￭ Some compilers tightly interweave data (e.g., bytes, values) within code 
￭ Imprecision can create trickle-down errors in instruction recovery!
￭ Example from OpenSSL (one of the most popular HTTPS libraries):
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popfq // original
.byte 0xf3,0xc3
.size AES_cbc_encrypt
.align 64
.LAES_Te
.long 0xa56363c6

popfq // disassembled
repz retq
nop
nop
(bad)
movslq -0x5b(%rbx),%esp
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Questions?

59



Stefan Nagy

Pillars of RE: 
Control Flow Recovery
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Control Flow

￭ What is it?
￭ ??? 
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Control Flow

￭ What is it?
￭ How execution flows 

from one application 
component to others

￭ Why do we care?
￭ ??? 
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Control Flow

￭ What is it?
￭ How execution flows 

from one application 
component to others

￭ Why do we care?
￭ Want to understand 

the entire program!
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

64

jmp 0x4001AB3 Target is pre-set statically
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

65

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?



Stefan Nagy

Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

66

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?
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Recovering Control Flow

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end
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Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.
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int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… 
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int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}

$ objdump --syms example | grep .text
0000000000001090 l F .text 0000000000000000 deregister_tm_clones
00000000000010c0 l F .text 0000000000000000 register_tm_clones
0000000000001100 l F .text 0000000000000000 __do_global_dtors_aux
0000000000001140 l F .text 0000000000000000 frame_dummy
0000000000001150 g F .text 0000000000000018 addition
0000000000001060 g F .text 0000000000000026 _start
0000000000001170 g F .text 0000000000000085 main
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Symbol Stripping

￭ Debugging symbols: maps instructions in the compiled binary program to 
their corresponding variable, function, or line in the source code.
￭ Makes RE easy if you have symbols… but often stripped from the binary!
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int addition(int num1, int num2){
     return num1+num2;
}

int main(){
     int var1, var2;
     printf("Enter number 1: ");
     scanf("%d",&var1);
     printf("Enter number 2: ");
     scanf("%d",&var2);
     int res = addition(var1, var2);
     printf ("Output: %d", res);
     return 0;
}

$ objdump --syms example

example:     file format elf64-x86-64

SYMBOL TABLE:
no symbols
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ ??? 
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: opaque predicates → introduces “fake” control-flow that is confusing!
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Obfuscation

￭ Obfuscation: techniques designed to make third-party analysis difficult
￭ Developers want to keep their intellectual property secret to just themselves!
￭ Example: control-flow flattening → removes any recognizable flow ordering
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Questions?
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Pillars of RE: 
Structure Recovery
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Program Structure

￭ Why do we care?
￭ ??? 

77



Stefan Nagy

Program Structure

￭ Why do we care?
￭ Know how the code’s 

parts work together
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Program Structure

￭ Why do we care?
￭ Know how the code’s 

parts work together

￭ Examples:
￭ Basic Blocks
￭ Loop Types
￭ Recursion
￭ Jump Tables
￭ Functions
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Basic Blocks:
￭ Start:  

￭ Target of a jmp
￭ Target of a call
￭ Target of a ret

￭ End: 
￭ Ends in a jmp
￭ Ends in a call
￭ Ends in a ret
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Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions: 
￭ Start: 

￭ Target of a call 
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:  
￭ Location of a ret 
￭ Location of a tail call
￭ A known epilogue
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Prologue

Epilogue

C-level Switch Table
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Questions?
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RE Tasks: Decompilation
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Decompilation

￭ Goal: ??? 
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Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary

86

Control 
Flow 

Analysis

Data Flow 
analysis

Structure 
Recovery

Structure 
Analysis

C Code 
Generation

Instruction 
Recovery
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Decompilation

￭ Goal: obtain semantically-equivalent source code from a compiled binary
￭ In practice: really difficult with little guarantee of success (compilable or correct code)

87

Control 
Flow 

Analysis

Data Flow 
analysis

Structure 
Recovery

Structure 
Analysis

C Code 
Generation

Instruction 
Recovery

Will it re-compile?
Will it run correctly?

Is it human readable?
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Try it yourself!

88

112d: push %ebp
112e: mov %esp,%ebp   // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf
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Try it yourself!

89

112d: push %ebp
112e: mov %esp,%ebp   // mov src,dst
1131: mov %edi,$0x14(%ebp)
1134: mov $0x0,$0x4(%ebp)
113b: cmp $0x1,$0x14(%ebp)
113f: jne 1148
1141: add 0x1337,$0x4(%ebp)
1148: mov $0x0,%eax
114d: pop %ebp
114e: ret
114f: nop

https://rev.fish/files/bar2022_keynote.pdf

112d

1148

1141

foo = 0; // 1134
if (bar == 1) { // 113b

// 1141
foo = foo + 0x1337;

}
return 0; // 1148

Variables:
ebp-0x4: foo
ebp-0x14: bar
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Popular Decompilers 

￭ Many decompilers available today (both commercial and open-source)
￭ Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)
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angr IDA Pro Binary Ninja Ghidra
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Different Decompilers = Different Outputs

￭ Example: HelloWorld (ARM version) on DogBolt.org 
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Questions?
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Our Research: 
Fuzzing Decompilers’ Correctness
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Challenges to Binary Decompilation

94

Accurate Decompilation →

Source Code
Optimizations

Binary Formats
Obfuscations

↓
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How can we test decompilers?

￭ Differential testing: 
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

95

long g0     = 0;
long *g1[1] = {&g0};
int  g2     = 1;
int  *g3    = &g2;

Mutated 
Source

Globals 
& Values

Compare: g0, g1, g2, g3

int main () {
  if (!g0) {
    ++g2;
    g3 = (int *)1;
    if (g1[0] != (long *)1) {
      g2 = 7UL 

  % (g1[0] != (long *)1 ? 
  1 : g1[0] == (long *)1);

    } else {
      g2 = 0;
    }
  }
}
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How can we test decompilers?

￭ Differential testing: 
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

￭ … but is that it?
￭ Compilers?
￭ Formats?
￭ Optimizations?
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long g0     = 0;
long *g1[1] = {&g0};
int  g2     = 1;
int  *g3    = &g2;

Mutated 
Source

Globals 
& Values

Compare: g0, g1, g2, g3

int main () {
  if (!g0) {
    ++g2;
    g3 = (int *)1;
    if (g1[0] != (long *)1) {
      g2 = 7UL 

  % (g1[0] != (long *)1 ? 
  1 : g1[0] == (long *)1);

    } else {
      g2 = 0;
    }
  }
}
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How can we test decompilers?

￭ Differential testing: 
￭ Mutate source code
￭ Decompile, then recompile
￭ Compare programs’ output
￭ Non-equivalence = bug

￭ … but is that it?
￭ Compilers?
￭ Formats?
￭ Optimizations?
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long g0     = 0;
long *g1[1] = {&g0};
int  g2     = 1;
int  *g3    = &g2;

Mutated 
Source

Globals 
& Values

Compare: g0, g1, g2, g3

int main () {
  if (!g0) {
    ++g2;
    g3 = (int *)1;
    if (g1[0] != (long *)1) {
      g2 = 7UL 

  % (g1[0] != (long *)1 ? 
  1 : g1[0] == (long *)1);

    } else {
      g2 = 0;
    }
  }
}

Challenge: How to systematically explore all factors—and 
combinations thereof—uniquely influencing binary code? 
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Our Approach: Mutate Everything
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Our Approach: Mutate Everything

99

Results: 46 new decompilation bugs found across 7 
mainstream free and commercially-sold decompilers 
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Some Interesting Decompilation Bugs We’ve Found

￭ #1: Erroneous recovery of floating-point data as integers
￭ Affects Angr, Binary Ninja, and Reko 
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Some Interesting Decompilation Bugs We’ve Found

￭ #2: Mis-handling of Mach-O (MacOS) and ELF (Linux) calling conventions
￭ Affects Reko 
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Some Interesting Decompilation Bugs We’ve Found

￭ #3: Erroneous recovery of 
switch-case case logic
￭ Affects Binary Ninja

￭ Result: completely different 
execution paths at runtime!
￭ Deemed a high-severity bug
￭ Since found other instances
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Some Interesting Decompilation Bugs We’ve Found

￭ #3: Erroneous recovery of 
switch-case case logic
￭ Affects Binary Ninja

￭ Result: completely different 
execution paths at runtime!
￭ Deemed a high-severity bug
￭ Since found other instances
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https://binary.ninja/2024/06/19/restructuring-the-decompiler.html



Stefan Nagy

Supplemental Content: Domain-specific RE

￭ Dr. Zhiqiang Lin’s 
keynote at BAR’23

￭ Lots of cool bugs!
￭ Tesla Infotainment
￭ “Super Apps”
￭ And more!

￭ Check it out!
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Next time on CS 4440…

105

Today’s Security Ecosystem
Bug Bounties, CTF Competitions
Career Paths in Cyber Security


