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Week 12: Lecture B 
Side Channels & Hardware Security

Thursday, November 13, 2025

1



Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas 

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)
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Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/17 via Google Form
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Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 4th by 11:59PM
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Final Exam

￭ Save the date: 1–3PM on Wednesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Cheat Sheet
￭ One 8.5”x11” paper with handwritten/typed notes on both sides
￭ Suggestion: Don’t just use someone else’s—you’ll learn better making your own!
￭ Suggestion: Don’t just paste lecture slides—you’ll learn better by writing/typing it!
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Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!
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Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!
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Last lecture (Thursday, Dec. 4th) will 
go over the exam review solutions

Solutions won’t be posted online. 
(Reminder: attendance/participation 
makes up 5% of your course grade)

To get the most out of this, treat it 
just as you would the Final Exam
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End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 15th
￭ https://scf.utah.edu
￭ Please please please!
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https://scf.utah.edu/blue/
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End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 19th
￭ https://scf.utah.edu
￭ Please please please!
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If 85% of the class (122 of 143 students) 
submits an eval, we will add 5 points of 
extra credit to your Participation grades! 

https://scf.utah.edu/blue/
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Reminders: Participation Extra Credit

￭ Piazza: 5 points per top-10 student contributors
￭ Answering peers’ questions
￭ Providing helpful resources

￭ Wiki Contributions: 1 point per approved contribution
￭ Must be cleared in advance

￭ Course Evals: 5 points if 85% of class submits evals
￭ Will be released soon on scf.utah.edu 
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Reminders: Participation Extra Credit

￭ Piazza: 5 points per top-10 student contributors
￭ Answering peers’ questions
￭ Providing helpful resources

￭ Wiki Contributions: 1 point per contribution
￭ Must be cleared in advance

￭ Course Evals: 5 points if 85% of class submits evals
￭ Will be released soon on scf.utah.edu 
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Final deadline for extra credit will be the 
last day of class (Thursday, December 4th)  
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Why
PhD?

Kahlert School of Computing

Information session for
prospective  graduate
students
• What to expect from graduate school
• Reasons to pursue graduate career
• Perspective of alumni and current students
• How to prepare your application (and a statement of 

purpose)

November 14, 3:00pm – 5:00pm
MEB 3147 (LCR) and Zoom ( free pizza—please RSVP )

RSVP / Zoom links:

Graduate Program
Open House
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Announcements

￭ Instructor on work travel next week
￭ Presenting our GUI fuzzing work at ASE’25 😀

￭ Guest lectures planned for both days
￭ Week 13A: Cyber-physical Systems Security

￭ Guest speaker: Dr. Luis Garcia (Asst. Prof @ UofU)
￭ Week 13B: Binary Reverse Engineering

￭ Guest speaker: Zao Yang (researcher in my group)

￭ Attendance not graded for these lectures…
￭ But you should definitely show up
￭ These are major hot topics in security!
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https://github.com/FuturesLab/GUIFuzzPlusPlus
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Questions?
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Last time on CS 4440…
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Election Cybersecurity
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Requirement #1: Integrity

￭ Goals: outcome matches voter’s intent
￭ Votes are cast as intended
￭ Votes are counted as cast
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Requirement #2: Confidentiality

￭ Goals: nobody can figure out how you voted
￭ … even if you try to prove it to them
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Requirement #3: Authentication

￭ Goals: 
￭ Only authorized voters can cast votes
￭ Each voter can cast at most one vote
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Requirement #4: Availability

￭ Goals: 
￭ All authorized voters have opportunity to vote
￭ System is able to accept all votes on schedule 
￭ System can produce results in a timely manner
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Computer-based Voting Devices

21

DRE Machine Optical Scanner
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Ballot Tampering Attacks
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Ben:    000
George: 000
Ben:    010
George: 000
Ben:    010
George: 990
Ben:    010
George: 991
Ben:    010
George: 992
Ben:    010
George: 993
Ben:    010
George: 994
Ben:    010
George: 995
Ben:    010
George: 996
Ben:    010
George: 997
Ben:    010
George: 998
Ben:    010
George: 999
Ben:    010
George: 000

Memory Corruption Attacks
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Memory Corruption Attacks
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Return-oriented Programming (ROP)
Use code gadgets to achieve functionality
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Code Insertion Attacks
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Code Insertion Attacks
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Voting Machine Security
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Voting Machine Security
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Internet-based Voting Security
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Internet-based Voting Security
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Questions?
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This time on CS 4440…

32

Side Channels
Hardware Security

Hardware Supply Chain Attacks
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Exploitable Security Flaws

33

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer 
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data
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Exploitable Security Flaws
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￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer 
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

What if I told you that
implementation flaws 
can be just as severe?
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Side Channel Attacks
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Side Channel Attacks

“Any attack based on extra information 
that can be gathered because of the 
fundamental way a computer protocol 
or algorithm is implemented, or minor, 
but potentially devastating, mistakes or 
oversights in the implementation.” 
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Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

37

Execution TimeEmitted Radiation Power Consumption
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Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you
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Execution TimeEmitted Radiation Power Consumption

These (and other) side channels reveal 
critical information that is exploitable
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Optical and Acoustic Side Channels
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Stealing Passwords
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Stealing Passwords
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How did we know the passcode is 000000?

We can directly see him press those exact keys
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can 

easily guess) the key interface
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can 

easily guess) the key interface
￭ Attacker maps movements to 

pressed keys on the interface
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Stealing Information
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Stealing Information
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Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware
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Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ ???
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Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement: 

￭ Consider microphone
￭ Remove ambient noise

￭ Use model to infer entered data
￭ Passwords
￭ Usernames
￭ Phone numbers
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Questions?
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Timing Side Channels: 
Password Checking
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Password Checking

￭ Password verification—how would you implement this?

53

bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}

Analogous to 
memcmp()
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bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}

Password Checking

￭ Password verification—how would you implement this?

54

Analogous to 
memcmp()

Does this password 
checking code reveal 

a security flaw?
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bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

56

ABCDEFGH == PASSWORD
￭ ???

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

57

PASSEFGH == PASSWORD
￭ ???

ABCDEFGH == PASSWORD
￭ False on first iteration

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

58

ABCDEFGH == PASSWORD
￭ False on first iteration

PASSEFGH == PASSWORD
￭ True on iterations 1–4
￭ False on fifth iteration

More code executed 
for a correct symbol!

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

59

How can this side channel be exploited?
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Password Checking
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How can this side channel be exploited?

Attacker: ABCDEF



Stefan Nagy

Password Checking

61

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond
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Password Checking
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How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Attacker: CBCDEF

Server: False
Server took 2ms to respond

“C” took 
longer!
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Password Checking

63

How can this side channel be exploited?

Server: False

Attacker: CRCDEF

Server took 2ms to respond
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Password Checking
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How can this side channel be exploited?

Attacker: CRCDEF

Server: False
Server took 2ms to respond

Attacker: CHIDEF

Server: False
Server took 4ms to respond

“CHI”…
Getting 
warmer!
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Password Checking
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How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond
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Password Checking

66

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Through timing analysis, attacker can infer the 
correctness of individual password symbols!
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Password Checking

￭ Solution:
￭ ???
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Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

68

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true” 

for (int i = 0; i < len; i++) {

        result &= ca[i] == cb[i];

        return result;
    }
}

Guess: PASSEFGH
Bit: 11110000
Result: False



Stefan Nagy

Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

69

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true” 

for (int i = 0; i < len; i++) {

        result &= ca[i] == cb[i];

        return result;
    }
}

PASSEFGH == PASSWORD
￭ False on last iteration

ABCDEFGH == PASSWORD
￭ False on last iteration

PASSWORD == PASSWORD
￭ True on last iteration

Guess: PASSEFGH
Bit: 11110000
Result: False

Password Login Attempts:

True and False run 
for identical time!
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Password Checking

￭ Implications:
￭ ???
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Password Checking

￭ Implications:
￭ Never use timing-unsafe string compares when handling sensitive data!
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Questions?
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Timing (and Power) Side Channels: 
RSA Encryption
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Recap: RSA for Confidentiality

￭ Summary:
￭ Encrypt with ???
￭ Decrypt with ???
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￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N) 
￭ Private key = (d,N)

￭ To encrypt:  
￭ E(x) = xe mod N

￭ To decrypt:  
￭ D(x) = xd mod N

75

Recap: RSA for Confidentiality
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￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N) 
￭ Private key = (d,N)

￭ To encrypt:  
￭ E(x) = xe mod N

￭ To decrypt:  
￭ D(x) = xd mod N

76

Modular exponentiation must 
be implemented efficiently

Recap: RSA for Confidentiality
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

77

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Does this decryption code 
reveal a security flaw?
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

78

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N) 

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

79

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N) 

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N
3. Multiply by C
4. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Timing and power will differ 
between key bits 0 versus 1!
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RSA Power Analysis

80

How can this side channel be exploited?
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RSA Power Analysis
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How can this side channel be exploited?

Attacker can retrieve a user’s private key!



Stefan Nagy

Realistic Power Analysis
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Mitigations

￭ Solution: ???
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Mitigations

￭ Solution: 
￭ Make critical code constant-time

￭ … but what could go wrong? 

84



Stefan Nagy

Mitigations?

￭ Solution: 
￭ Make critical code constant-time

￭ … but what could go wrong? 
￭ Code may end up being compiled 

without constant-time protection
￭ The code that you see may NOT be 

the code that you will execute

85
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Questions?

86
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Cache-based Timing Side Channels:
Spectre & Meltdown

87
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CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: ???

88

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

https://computationstructures.org/lectures/caches/caches.html
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CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: the CPU cache
￭ Small storage built-in to CPU
￭ Common hierarchy: L1, L2, L3, L4

￭ Key purpose: accelerate retrieval 
of commonly-accessed data

89

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2–4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html
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Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ ??? 

90

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array) 

￭ ???

91

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways

92

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array) 

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution 
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

93

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data 
pre-cached and ready to go!
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Program Execution

￭ What do you expect to happen here?
￭ index < arraySize 

￭ Within-bounds read… success
￭ index > arraySize …

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution 
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

94

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data 
pre-cached and ready to go!

Implication: data we shouldn’t have access 
to (e.g., from another program) is cached

Cache lookup is faster… can we exploit a 
timing side channel to recover this data? 
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

95

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
return result;

}
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

96

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
return result;

}

1. Cache array[index]

2. Bounds check index

3. Clear array[index]

Due to roll-back, we 
can’t retrieve result!
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

97

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result] 

3. Bounds check index, result 

4. Clear array[index]

5. hugeArray[result] stays…
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

98

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result] 

3. Bounds check index, result 

4. Clear array[index]

5. hugeArray[result] stays…

How can attacker figure out result is 4440?

Since 4440 was cached, hugeArray[4440] 
has the fastest access time of all array indices!

for (int i=0; i<...; i++){
int x = hugeArray[i];

}

index

ac
ce
ss

 t
im
e 4440
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￭ Widespread: affects nearly every 
device (laptop, phone, etc.)
￭ Both ARM and Intel variants
￭ Fully breaks process isolation

99

Attacking Speculative Execution
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Mitigations?

￭ Can CPU-based side channels be practically fixed?

100
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Mitigations?

￭ Can CPU-based side channels be practically fixed?
￭ Not really… must disable speculative execution
￭ Goodbye performance! 

101
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Questions?

102
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Hardware Security

103
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Hardware

104

Hardware

Firmware

Hypervisor

Operating System

Applications

The foundation 
of our computers
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Hardware

105

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken 
the entire system

The foundation 
of our computers
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Hardware
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Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken 
the entire system

The foundation 
of our computers
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Creating Hardware

107

DesignSpecification Synthesis

Text HDL

Design Time



Stefan Nagy

Creating Hardware

108

DesignSpecification Synthesis

Text HDL

Design Time

Similar to software design
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Creating Hardware

109

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design
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Creating Hardware

110

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
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Creating Hardware

111

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing
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Hardware Bugs

112

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched 
following Fabrication
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Hardware Bugs

113

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched 
following Fabrication
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Hardware Bugs
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Hardware Trojans

￭ Trojan Horse: 
￭ ???
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￭ Will be exploited at run time
￭ Remotely triggered by attacker
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Hardware Trojans

￭ Trojan Horse: 
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

￭ Engineering a trigger

119

Division sets 
div-by-zero flag

Addition resets 
div-by-zero flag

Software state will 
affect analog state!
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Hardware Trojans
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Recycled and Counterfeit Hardware
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Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan 
￭ Absolutely dangerous for security-critical use cases
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Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan 
￭ Absolutely dangerous for security-critical use cases
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Secure Hardware

￭ Can we ever know for sure that a chip is secure? 
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Next time on CS 4440…
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Cyber-physical Systems & IoT Security


