
Stefan Nagy

Week 12: Lecture B
Side Channels & Hardware Security

Thursday, November 13, 2025

1

Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

2

Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/17 via Google Form

Stefan Nagy

Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 4th by 11:59PM

3

Stefan Nagy 4

Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Wednesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Cheat Sheet
￭ One 8.5”x11” paper with handwritten/typed notes on both sides
￭ Suggestion: Don’t just use someone else’s—you’ll learn better making your own!
￭ Suggestion: Don’t just paste lecture slides—you’ll learn better by writing/typing it!

5

Stefan Nagy

Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!

6

Stefan Nagy

Practice Exam

￭ Practice Exam released
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Solutions discussed in-class only—don’t skip!

7

Last lecture (Thursday, Dec. 4th) will
go over the exam review solutions

Solutions won’t be posted online.
(Reminder: attendance/participation
makes up 5% of your course grade)

To get the most out of this, treat it
just as you would the Final Exam

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 15th
￭ https://scf.utah.edu
￭ Please please please!

8

https://scf.utah.edu/blue/

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by December 19th
￭ https://scf.utah.edu
￭ Please please please!

9

If 85% of the class (122 of 143 students)
submits an eval, we will add 5 points of
extra credit to your Participation grades!

https://scf.utah.edu/blue/

Stefan Nagy

Reminders: Participation Extra Credit

￭ Piazza: 5 points per top-10 student contributors
￭ Answering peers’ questions
￭ Providing helpful resources

￭ Wiki Contributions: 1 point per approved contribution
￭ Must be cleared in advance

￭ Course Evals: 5 points if 85% of class submits evals
￭ Will be released soon on scf.utah.edu

10

Stefan Nagy

Reminders: Participation Extra Credit

￭ Piazza: 5 points per top-10 student contributors
￭ Answering peers’ questions
￭ Providing helpful resources

￭ Wiki Contributions: 1 point per contribution
￭ Must be cleared in advance

￭ Course Evals: 5 points if 85% of class submits evals
￭ Will be released soon on scf.utah.edu

11

Final deadline for extra credit will be the
last day of class (Thursday, December 4th)

Stefan Nagy

Why
PhD?

Kahlert School of Computing

Information session for
prospective graduate
students
• What to expect from graduate school
• Reasons to pursue graduate career
• Perspective of alumni and current students
• How to prepare your application (and a statement of

purpose)

November 14, 3:00pm – 5:00pm
MEB 3147 (LCR) and Zoom (free pizza—please RSVP)

RSVP / Zoom links:

Graduate Program
Open House

Stefan Nagy 13

Stefan Nagy

Announcements

￭ Instructor on work travel next week
￭ Presenting our GUI fuzzing work at ASE’25 😀

￭ Guest lectures planned for both days
￭ Week 13A: Cyber-physical Systems Security

￭ Guest speaker: Dr. Luis Garcia (Asst. Prof @ UofU)
￭ Week 13B: Binary Reverse Engineering

￭ Guest speaker: Zao Yang (researcher in my group)

￭ Attendance not graded for these lectures…
￭ But you should definitely show up
￭ These are major hot topics in security!

14

https://github.com/FuturesLab/GUIFuzzPlusPlus

Stefan Nagy

Questions?

15

Stefan Nagy

Last time on CS 4440…

16

Election Cybersecurity

Stefan Nagy

Requirement #1: Integrity

￭ Goals: outcome matches voter’s intent
￭ Votes are cast as intended
￭ Votes are counted as cast

17

Stefan Nagy

Requirement #2: Confidentiality

￭ Goals: nobody can figure out how you voted
￭ … even if you try to prove it to them

18

Stefan Nagy

Requirement #3: Authentication

￭ Goals:
￭ Only authorized voters can cast votes
￭ Each voter can cast at most one vote

19

Stefan Nagy

Requirement #4: Availability

￭ Goals:
￭ All authorized voters have opportunity to vote
￭ System is able to accept all votes on schedule
￭ System can produce results in a timely manner

20

Stefan Nagy

Computer-based Voting Devices

21

DRE Machine Optical Scanner

Stefan Nagy

Ballot Tampering Attacks

22

Stefan Nagy

Ben: 000
George: 000
Ben: 010
George: 000
Ben: 010
George: 990
Ben: 010
George: 991
Ben: 010
George: 992
Ben: 010
George: 993
Ben: 010
George: 994
Ben: 010
George: 995
Ben: 010
George: 996
Ben: 010
George: 997
Ben: 010
George: 998
Ben: 010
George: 999
Ben: 010
George: 000

Memory Corruption Attacks

Stefan Nagy

Memory Corruption Attacks

24

Return-oriented Programming (ROP)
Use code gadgets to achieve functionality

Stefan Nagy

Code Insertion Attacks

25

Stefan Nagy

Code Insertion Attacks

26

Stefan Nagy

Voting Machine Security

27

Stefan Nagy

Voting Machine Security

28

Stefan Nagy

Internet-based Voting Security

29

Stefan Nagy

Internet-based Voting Security

30

Stefan Nagy

Questions?

31

Stefan Nagy

This time on CS 4440…

32

Side Channels
Hardware Security

Hardware Supply Chain Attacks

Stefan Nagy

Exploitable Security Flaws

33

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

Stefan Nagy

Exploitable Security Flaws

34

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

What if I told you that
implementation flaws
can be just as severe?

Stefan Nagy

Side Channel Attacks

35

Stefan Nagy

Side Channel Attacks

“Any attack based on extra information
that can be gathered because of the
fundamental way a computer protocol
or algorithm is implemented, or minor,
but potentially devastating, mistakes or
oversights in the implementation.”

36

Stefan Nagy

Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

37

Execution TimeEmitted Radiation Power Consumption

Stefan Nagy

Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

38

Execution TimeEmitted Radiation Power Consumption

These (and other) side channels reveal
critical information that is exploitable

Stefan Nagy

Optical and Acoustic Side Channels

39

Stefan Nagy

Stealing Passwords

40

Stefan Nagy

Stealing Passwords

41

How did we know the passcode is 000000?

We can directly see him press those exact keys

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

42

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements

43

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can

easily guess) the key interface

44

Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can

easily guess) the key interface
￭ Attacker maps movements to

pressed keys on the interface

45

Stefan Nagy

Stealing Information

46

Stefan Nagy

Stealing Information

47

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

48

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ ???

49

Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ Consider microphone
￭ Remove ambient noise

￭ Use model to infer entered data
￭ Passwords
￭ Usernames
￭ Phone numbers

50

Stefan Nagy

Questions?

51

Stefan Nagy

Timing Side Channels:
Password Checking

52

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

53

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Analogous to
memcmp()

Stefan Nagy

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Password Checking

￭ Password verification—how would you implement this?

54

Analogous to
memcmp()

Does this password
checking code reveal

a security flaw?

Stefan Nagy 55

bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

56

ABCDEFGH == PASSWORD
￭ ???

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

57

PASSEFGH == PASSWORD
￭ ???

ABCDEFGH == PASSWORD
￭ False on first iteration

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

￭ Password verification—how would you implement this?

58

ABCDEFGH == PASSWORD
￭ False on first iteration

PASSEFGH == PASSWORD
￭ True on iterations 1–4
￭ False on fifth iteration

More code executed
for a correct symbol!

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

 for (int i = 0; i < len; i++) {

 if (testPW[i] != realPW[i]) {
 return false;
 }
 }

 return true;
}

Stefan Nagy

Password Checking

59

How can this side channel be exploited?

Stefan Nagy

Password Checking

60

How can this side channel be exploited?

Attacker: ABCDEF

Stefan Nagy

Password Checking

61

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Stefan Nagy

Password Checking

62

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Attacker: CBCDEF

Server: False
Server took 2ms to respond

“C” took
longer!

Stefan Nagy

Password Checking

63

How can this side channel be exploited?

Server: False

Attacker: CRCDEF

Server took 2ms to respond

Stefan Nagy

Password Checking

64

How can this side channel be exploited?

Attacker: CRCDEF

Server: False
Server took 2ms to respond

Attacker: CHIDEF

Server: False
Server took 4ms to respond

“CHI”…
Getting
warmer!

Stefan Nagy

Password Checking

65

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Stefan Nagy

Password Checking

66

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Through timing analysis, attacker can infer the
correctness of individual password symbols!

Stefan Nagy

Password Checking

￭ Solution:
￭ ???

67

Stefan Nagy

Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

68

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true”

for (int i = 0; i < len; i++) {

 result &= ca[i] == cb[i];

 return result;
 }
}

Guess: PASSEFGH
Bit: 11110000
Result: False

Stefan Nagy

Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

69

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true”

for (int i = 0; i < len; i++) {

 result &= ca[i] == cb[i];

 return result;
 }
}

PASSEFGH == PASSWORD
￭ False on last iteration

ABCDEFGH == PASSWORD
￭ False on last iteration

PASSWORD == PASSWORD
￭ True on last iteration

Guess: PASSEFGH
Bit: 11110000
Result: False

Password Login Attempts:

True and False run
for identical time!

Stefan Nagy

Password Checking

￭ Implications:
￭ ???

70

Stefan Nagy

Password Checking

￭ Implications:
￭ Never use timing-unsafe string compares when handling sensitive data!

71

Stefan Nagy

Questions?

72

Stefan Nagy 73

Timing (and Power) Side Channels:
RSA Encryption

Stefan Nagy

Recap: RSA for Confidentiality

￭ Summary:
￭ Encrypt with ???
￭ Decrypt with ???

74

Stefan Nagy

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N)
￭ Private key = (d,N)

￭ To encrypt:
￭ E(x) = xe mod N

￭ To decrypt:
￭ D(x) = xd mod N

75

Recap: RSA for Confidentiality

Stefan Nagy

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N)
￭ Private key = (d,N)

￭ To encrypt:
￭ E(x) = xe mod N

￭ To decrypt:
￭ D(x) = xd mod N

76

Modular exponentiation must
be implemented efficiently

Recap: RSA for Confidentiality

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

77

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Does this decryption code
reveal a security flaw?

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

78

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Stefan Nagy

Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

79

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N
3. Multiply by C
4. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Timing and power will differ
between key bits 0 versus 1!

Stefan Nagy

RSA Power Analysis

80

How can this side channel be exploited?

Stefan Nagy

RSA Power Analysis

81

How can this side channel be exploited?

Attacker can retrieve a user’s private key!

Stefan Nagy

Realistic Power Analysis

82

Stefan Nagy

Mitigations

￭ Solution: ???

83

Stefan Nagy

Mitigations

￭ Solution:
￭ Make critical code constant-time

￭ … but what could go wrong?

84

Stefan Nagy

Mitigations?

￭ Solution:
￭ Make critical code constant-time

￭ … but what could go wrong?
￭ Code may end up being compiled

without constant-time protection
￭ The code that you see may NOT be

the code that you will execute

85

Stefan Nagy

Questions?

86

Stefan Nagy

Cache-based Timing Side Channels:
Spectre & Meltdown

87

Stefan Nagy

CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: ???

88

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

https://computationstructures.org/lectures/caches/caches.html

Stefan Nagy

CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: the CPU cache
￭ Small storage built-in to CPU
￭ Common hierarchy: L1, L2, L3, L4

￭ Key purpose: accelerate retrieval
of commonly-accessed data

89

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2–4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ ???

90

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ ???

91

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways

92

int read(int index){
int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < len(array)

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

93

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data
pre-cached and ready to go!

Stefan Nagy

Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ Within-bounds read… success
￭ index > arraySize …

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

94

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data
pre-cached and ready to go!

Implication: data we shouldn’t have access
to (e.g., from another program) is cached

Cache lookup is faster… can we exploit a
timing side channel to recover this data?

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

95

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
return result;

}

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

96

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
return result;

}

1. Cache array[index]

2. Bounds check index

3. Clear array[index]

Due to roll-back, we
can’t retrieve result!

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

97

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result]

3. Bounds check index, result

4. Clear array[index]

5. hugeArray[result] stays…

Stefan Nagy

Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

98

// index > len(array)
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result]

3. Bounds check index, result

4. Clear array[index]

5. hugeArray[result] stays…

How can attacker figure out result is 4440?

Since 4440 was cached, hugeArray[4440]
has the fastest access time of all array indices!

for (int i=0; i<...; i++){
int x = hugeArray[i];

}

index

ac
ce
ss

 t
im
e 4440

Stefan Nagy

￭ Widespread: affects nearly every
device (laptop, phone, etc.)
￭ Both ARM and Intel variants
￭ Fully breaks process isolation

99

Attacking Speculative Execution

Stefan Nagy

Mitigations?

￭ Can CPU-based side channels be practically fixed?

100

Stefan Nagy

Mitigations?

￭ Can CPU-based side channels be practically fixed?
￭ Not really… must disable speculative execution
￭ Goodbye performance!

101

Stefan Nagy

Questions?

102

Stefan Nagy

Hardware Security

103

Stefan Nagy

Hardware

104

Hardware

Firmware

Hypervisor

Operating System

Applications

The foundation
of our computers

Stefan Nagy

Hardware

105

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken
the entire system

The foundation
of our computers

Stefan Nagy

Hardware

106

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken
the entire system

The foundation
of our computers

Stefan Nagy

Creating Hardware

107

DesignSpecification Synthesis

Text HDL

Design Time

Stefan Nagy

Creating Hardware

108

DesignSpecification Synthesis

Text HDL

Design Time

Similar to software design

Stefan Nagy

Creating Hardware

109

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design

Stefan Nagy

Creating Hardware

110

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device

Stefan Nagy

Creating Hardware

111

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Stefan Nagy

Hardware Bugs

112

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched
following Fabrication

Stefan Nagy

Hardware Bugs

113

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched
following Fabrication

Stefan Nagy

Hardware Bugs

114

Stefan Nagy

Hardware Threats

115

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ ???

116

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

117

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

118

Stefan Nagy

Hardware Trojans

￭ Trojan Horse:
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

￭ Engineering a trigger

119

Division sets
div-by-zero flag

Addition resets
div-by-zero flag

Software state will
affect analog state!

Stefan Nagy

Hardware Trojans

120

Stefan Nagy

Recycled and Counterfeit Hardware

121

Stefan Nagy

Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan
￭ Absolutely dangerous for security-critical use cases

122

Stefan Nagy

Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan
￭ Absolutely dangerous for security-critical use cases

123

Stefan Nagy

Secure Hardware

￭ Can we ever know for sure that a chip is secure?

124

Stefan Nagy

Next time on CS 4440…

125

Cyber-physical Systems & IoT Security

