Week 12: Lecture B

Side Channels & Hardware Security

Thursday, November 13, 2025

Announcements

Project 3 grades are now available on Canvas

Think we made an error? Request a regrade!
= Valid regrade requests:
= You have verified your solution is correct
(i.e., we made an error in grading)

Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/17 via Google Form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Announcements

Project 4: NetSec released
= Deadline: Thursday, December 4th by 11:59PM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

4 Project 4: Network Security

Deadline: Thursday, December 4 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki
¢ VM Setup and Troubleshooting

\ » Terminal Cheat Sheet

Table of Contents:

¢ Helpful Resources
* Introduction
* Objectives
» Start by reading this!
o Packet Traces
o Attack Template
o Wireshark
* Part 1: Defending Networks
o Password Cracking
o Port Scanning
> Anomalous Activity
o What to Submit
o Part 2: Attacking Networks
o Plaintext Credentials
o Encoded Credentials
o Accessed URLs
o Extra Credit: Transferred Files
> What to Submit

* Submission Instructions

J

Stefan Nagy

- OO0
“= -
Project 4 Progress

Working on Part 1

0%
Finished Part 1, working on Part 2

0%
Finished both Part 1 and Part 2

0%
None of the above

0%

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

Save the date: 1-3PM on Wednesday, December 10

= CDA accommodations: schedule exam via CDA Portal ..,f e \ / A
High-level details (more to come): Q}}e
= One exam covering all course material THE

= Similar to project/quiz/lecture exercises o

Cheat Sheet

= One 8.5"x11” paper with handwritten/typed notes on both sides
= Suggestion: Don't just use someone else’s—you’ll learn better making your own!
= Suggestion: Don't just paste lecture slides—you’ll learn better by writing/typing it!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

Practice Exam

Practice Exam released 4 N
= See Assignments page on the CS 4440 website s a0 Inducion to Computer Sy

Practice Exam

This practice exam is intended to help you prepare for the final exam. It does not cover all material
that will appear on the final. We recommend that you use this practice exam to supplement your
preparation, in addition to going over your lecture notes, quizzes, and programming projects.

1 . o o
Final lecture will serve as a review session e
benefit out of this exam review by treating it as if it were the real exam: you may refer to your

two-sided 8.5"x 11" cheat sheet, but allow yourself only 2 hours to complete the exam.

H M ° ? 1 The final lecture will in-class review sessi ing the solutions to this practi)
= Solutions discussed in-class only—don’t skip! Semton o i s il S o et e

1. Cryptography. Alice and Bob, two CS 4440 alumni, have been stranded on a desert island
for several weeks. Alice has built a hut on the beach, while Bob lives high in the forest
branches. They plan to communicate silently by tossing coconuts over the treeline.

Compounding Alice and Bob’s misfortune, on this island there also lives an intelligent, lit-
erate, and man-eating panther named Mallory. The pair can cooperate to warn each other
when they see the animal approaching each others’ shelters, but they fear that Mallory will
intercept or tamper with their messages in order to make them her next meal. Fortunately,
Alice and Bob each have an RSA key pair, and each knows the other’s public key.

(a) Design two protocols that leverage RSA, such that Alice can securely transmit a mes-
sage to Bob whilst ing (1) message iality and (2) message integrity.

o /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

Practice Exam

To get the most out of this, treat it
just as you would the Final Exam

- ™
Last lecture (Thursday, Dec. 4th) will

go over the exam review solutions
- Y,

4)
Solutions won’t be posted online.

(Reminder: attendance/participation
makes up 5% of your course grade)

.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 7

End-of-semester Course Evals

| want your feedback!

= 3rd time teaching this course &
= Help me improve the class!

Due by December 15th
= https://scf.utah.edu
= Please please please!

HELP MEHELP YOU

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 8

https://scf.utah.edu/blue/

End-of-semester Course Evals

a)
If 85% of the class (122 of 143 students)

submits an eval, we will add 5 points of

extra credit to your Participation grades!
N /

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 9

https://scf.utah.edu/blue/

Reminders: Participation Extra Credit

Piazza: 5 points per top-10 student contributors

= Answering peers’ questions
= Providing helpful resources

Wiki Contributions: 1 point per approved contribution
= Must be cleared in advance

Course Evals: 5 points if 85% of class submits evals
= Will be released soon on scf.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 10

Reminders: Participation Extra Credit

4)

Final deadline for extra credit will be the
last day of class (Thursday, December 4th)

A\ /

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 1

Kahlert School of Computing

Graduate Program
Open House

Information session for)
prospective graduate
students ¢

What to expect from graduate school RSVP / Zoom links:

Reasons to pursue graduate career

Perspective of alumni and current students

How to prepare your application (and a statement of
purpose)

November 14, 3:00pm - 5:00pm

MEB 3147 (LCR) and Zoom (free pizza—please RSVP)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Georgia Tech’s
Cybersecurity Journey:
Education, Research,

and Entrepreneurship

With Mustaque Ahamad

Professor, Regents' Entrepreneur, and Interim Chair
School of Cybersecurity and Privac

Co-founder, Pindrop Security and Codoxo

College of Computing, Georgia Institute of Technology

U Kahlert Distinguished Lecture

Announcements

Instructor on work travel next week
= Presenting our GUI fuzzing work at ASE'25 &

Guest lectures planned for both days
= Week 13A: Cyber-physical Systems Security
= Guest speaker: Dr. Luis Garcia (Asst. Prof @ UofU)
= Week 13B: Binary Reverse Engineering
= Guest speaker: Zao Yang (researcher in my group)

Attendance not graded for these lectures...

= But you should definitely show up
= These are major hot topics in security!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

https://github.com/FuturesLab/GUIFuzzPlusPlus

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

Last time on CS 4440...

Election Cybersecurity

Requirement #1: Integrity

Goals: outcome matches voter’s intent

= Votes are cast as intended
= \otes are counted as cast

'PRESIDENT .'
BARACK / MITT
OBAMA ROMNEY |

DEMOCRAT REPUBLICAN /&

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Requirement #2: Confidentiality

Goals: nobody can figure out how you voted

... even if you try to prove it to them

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

uf
lllllllllllll

RETURN SERVICE REQUESTED

, Official
: Ballot

Enclosed

P

‘SaLTI020M020

'''

Stefan Nagy

Requirement #3: Authentication

Goals:

= Only authorized voters can cast votes
= Each voter can cast at most one vote

Acceptable Photo IDs

WIDzivar iForMED US PASSPORT WI DRveR, Stats ID,
o License L 'B0OK or CARD ox IDPP RECEIPT

[l Photo ID required (Strict)

Photo ID requested (Non-strict)

. Non-photo ID required (Strict)

. Non-photo ID requested (Non-strict)
[] No ID required to vote

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Requirement #4: Availability

Goals:
= All authorized voters have opportunity to vote
= System is able to accept all votes on schedule
= System can produce results in a timely manner

65':?"‘;:%“ iVote

IVote ¢o

ser V
e Npro terrupt lon
8ress

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 20

Computer-based Voting Devices

DRE Machine Optical Scanner

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

2
(&)
g
-
<L
o)
o
-
Q
Q.
5
—
)
°
©
(a'a]

i
|
I
M

i)

Use a No. 2 Pencil

0, .0,0/6

Fill oval completely

+

Sl Jo #29

DR ¥
PSS o.oooo»o.&.
.

R S LS
D Jfr OO
) 0.0,»6

Y 4

vovvoo)\
A

S w.»(v,vo R S

2%
SR
)

XS

AOPOEON v
'Joo%oo‘o;;ot.o

Z €N

RS R o>40.¢06t -

Sy ek

+ ..o;v

AR SUeHD DRSO

%

+o# 0;&0

oooQ&(jo?«

POSDSBNS
O¢!

e e

of' .,o

,.
S ;:
IS
0 ,}.& SO
- 7. R ..o 440 ?o +

o’?ovo

Ey
1 A

22

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Memory Corruption Attacks

Ben: Ao
George: 668

Memory Card

OOOOOOOOOOOOOOOOO
U UNIVERSITY OF UTAH Stefan Nagy

Memory Corruption Attacks

Return-oriented Programming (ROP)
Use code gadgets to achieve functionality

previous frame ptr

<: string “/bin/sh”

system()’'s first arg

(i AAAAAAAAA. . .\0B

foo()'s first arg system()’s return addr

foo()'s return addr Address of system()

main()'s frame ptr AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

vV VY v vy

Buffer (non-executable)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Can DREs Provide Long-Lasting Security?
The Case of Return-Oriented Programming and the AVC Advantage

Stephen Checkoway Ariel J. Feldman Brian Kantor
UC San Diego Princeton UC San Diego

J. Alex Halderman Edward W. Felten Hovav Shacham
U Michigan Princeton UC San Diego

Abstract

A secure voting machine design must withstand new at-
tacks devised throughout its multi-decade service life-
time. In this paper, we give a case study of the long-
term security of a voting machine, the Sequoia AVC
Advantage, whose design dates back to the early 80s.
The AVC Ad: was designed with ising secu-
rity features: its software is stored entirely in read-only
memory and the hardware refuses to execute instructions
fetched from RAM. Nevertheless, we demonstrate that an
attacker can induce the AVC Advantage to misbehave
in arbitrary ways —including changing the outcome of
an election—by means of a memory cartridge contain-
ing a specially-formatted payload. Our attack makes es-
sential use of a recently-invented exploitation technique
called return-oriented programming, adapted here to the
Z80 In return-oriented ing, short
snippets of benign code already present in the system

The AVC Advantage voting machine we studied.

(which does not include the daughterboard) in machines
decommissioned by Buncombe County, North Carolina,
and purchased by Andrew Appel through a government
auction site [2].

Stefan Nagy

24

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Code Insertion Attacks

Replacement Access Keys

* 2 keys that allow easy service access to the Tally
Printer and replacement battery compartment

GS-567311-1000 $5.90 USD per set
$6.90 CAD per set

Enter a quantity

add to your order »

ORDER BY PHONE 800.769.3246

Stefan Nagy

25

Code Insertion Attacks

President of the United States

George Washington
Framers Party

Benedict Arnold

George Washington
Benedict Arnold Redcoat Party

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 26

Voting Machine Security

LILY HAY NEWMAN SECURITY 08.28.18 11:04 AM

VOTING MACHINES ARE STILL
ABSURDLY VULNERABLE TO
ATTACKS

Voting Machine Manual Instructed
Election Officials to Use Weak
Passwords

A vendor manual for voting machines used in
about ten states shows the vendor instructed
customers to use trivial, easy to crack

] passwords and to re-use the passwords when
= changing log-in credentials.

The Socialist
Memelords
Radicalizing
Instagram

6 minutes ago

This Guy Wants to
Open a DIY Tesla
Repair Shop

ES) BILL CLARK/GETTY IMAGES

anhour ago

Scientists Found
Antibiotic-Resistant
Bacteria In Space

WHILE RUSSIAN INTERFERENCE operations in the 2016 US

presidential elections focused on misinformation and
targeted hacking, officials have scrambled ever since to

shore up the nation’s vulnerable election infrastructure.

New research, though, shows they haven’t done nearly
enough, particularly when it comes to voting machines.

States and counties have had two years since the 2016 presidential election to
educate themselves about security best practices and to fix security vulnerabilities in
their election systems and processes. But despite widespread concerns about
election interference from state-sponsored hackers in Russia and elsewhere,

apparently not everyone received the memo about security, or read it.

An election security expert who has done risk in several states since

2hours ago

Supreme Court
Weighs Whether
Apple’s App Store Is

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

27

Voting Machine Security

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 28

Internet-based Voting Security

€ Emngrsaslcon IVO te

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Internet-based Voting Security

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 30

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

This time on CS 4440...

Side Channels
Hardware Security
Hardware Supply Chain Attacks

Exploitable Security Flaws

So far, we have studied attacks that exploit design flaws

previous frame ptr

string “/bin/sh”

AAAAAAAAA. . .\0

system()’'s first arg

foo()’'s first arg

system()’'s ret addr

foo()'s ret addr

Address of system()

main()’'s frame ptr

AAAAAAAAAAAAAAAAAAAAA

Buffer
(non-executable)

RAALL

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

Buffer Overflows

ECB Diffusion Analysis

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

SYN Flooding
\‘ . H®)=H(y)

Hash Collisions

Stefan Nagy

Hypertext Transfer Protocol
» GET /libs/qimessaging/1.0/qimessaging.js?v=1.2.0 HTTP/1.1\r\n
Host: 10.0.0.6\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101
Accept: */*\r\n
Accept-Language: en-US,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Referer: http://10.0.0.6/\r\n
Connection: keep-alive\r\n

-| Authorization: Basic bmFvOmNhcmVzc2VzLTIWMDE=\r\n
Credentials: nao:

Sniffing Unencrypted Data

http://cs4440.eng.utah
.edu/project3/search
?79=%3Cscript%3E. ..

Cross-site Scripting

33

Exploitable Security Flaws

4)
What if | told you that

implementation flaws
can be just as severe?

- J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

Side Channel Attacks

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 35

Side Channel Attacks

“Any attack based on extra information
that can be gathered because of the
fundamental way a computer protocol
or algorithm is implemented, or minor,
but potentially devastating, mistakes or
oversights in the implementation.”

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 36

Side Channels

What are some potential sources of indirect info emitted by your computer?
= Additional channels of information beyond what is directly visible/accessible to you

Emitted Radiation Execution Time Power Consumption

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Side Channels

These (and other) side channels reveal
critical information that is exploitable

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

Optical and Acoustic Side Channels

Stealing Passwords

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Stealing Passwords

How did we know the passcode is 0000007

We can directly see him press those exact keys

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 4

Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements
= Assume attacker knows (or can
easily guess) the key interface

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements
= Assume attacker knows (or can
easily guess) the key interface
= Attacker maps movements to
pressed keys on the interface

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

Stealing Information

Hard Drive LED Allows Data Theft
From Air-Gapped PCs

Researchers at Ben-Gurion University of the Negev in Israel have
disclosed yet another method that can be used to exfiltrate data
from air-gapped computers, and this time it involves the activity
LED of hard disk drives (HDDs).

Researchers at Ben-Gurion University of the Negev in Israel
have disclosed yet another method that can be used to
exfiltrate data from air-gapped computers, and this time it
involves the activity LED of hard disk drives (HDDs).

Many desktop and laptop computers have an HDD activity
indicator, which blinks when data is being read from or written
to the disk. The blinking frequency and duration depend on the
type and intensity of the operation being performed.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 46

Stealing Information

A piece of malware that is installed on the targeted air-gapped
device can harvest data and exfiltrate it using one of these
encoding systems. As for reception and decoding, the attacker
must find a way to observe the targeted device's activity LED,
either using a local hidden camera, a high-resolution camera
that can capture images from outside the building, a camera
mounted on a drone, a compromised security camera, a
camera carried by a malicious insider, or optical sensors.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 47

Acoustic Side Channels

Sound can leak information, too!
= Keyboard enthusiasts beware

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

Acoustic Side Channels

))

Sound can leak information, too!
= Keyboard enthusiasts beware

Build model of key press noises

= Model refinement:
. ?27?

v

"password"

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Acoustic Side Channels

))

Sound can leak information, too!
= Keyboard enthusiasts beware

Build model of key press noises

= Model refinement:
= Consider microphone
= Remove ambient noise
= Use model to infer entered data
= Passwords
= Usernames

v

= Phone numbers "paSSWOrd"

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 50

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Timing Side Channels:
Password Checking

Password Checking

Password verification—how would you implement this?

(N

bool checkPW(char *testPW, char *realPW, int len) { e = = Analogous to

mememp ()

for (int 1 = 0; i < len; i++) {

if (testPW[i] != realPW[i]) {
return false
}

}

return true

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

Password Checking

Password verification—how would you implement this?

e D
bool checkPW(char *testPW, char *realPW, int len) { - - - ANELOEEUS Lo
memcmp ()
for (int i = 0; 1 < len; i++) {
if (testPW[i] '= realPW[i]) {
return false 4 . A
} Does this password
) checking code reveal
i ?
R a security flaw:
} N /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Does this password-checking code reveal a security flaw?

No—an attacker could only brute-force guess!

0%
Yes—the design is vulnerable (e.g., buffer overflow).

0%
None of the above

0%

(\
bool checkPW(char *testPW, char *realPW, int len) {

for (int i = @; 1 < len; i++) {

if (testPW[i] != realPW[i]) {
return false
}

}

return true

}

. /

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Password Checking

Password verification—how would you implement this?

4)

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int i = 0; i < len; i++) { = ?7?7?

if (testPW[i] != realPW[i]) {
return false
}

}

return true

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Password Checking

Password verification—how would you implement this?

4)

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int 1 = @; i < len; i++) { = False on first iteration
if (testPW[i] != realPW[i]) { PAS%EEGH == PASSWORD
return false 7?72
}
}
return true
}
» Y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Password Checking

Password verification—how would you implement this?

4)

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int 1 = @; i < len; i++) { = False on first iteration
if (testPW[i] !'= realPW[i]) { PASSEFGH == PASSWORD
return false = Trueon |terat!ons 1.—4
} = False on fifth iteration
}
return true More code executed
} for a correct symbol!
N Y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Password Checking

[How can this side channel be exploited? }

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 59

Password Checking

[How can this side channel be exploited? }

=

Attacker: ABCDEF

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Password Checking

[How can this side channel be exploited? }

Attacker: ABCDEF

Server: False
Server took 1ms to respond

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Password Checking

[How can this side channel be exploited? }

Attacker: ABCDEF

Server:
Server took to respond
T
Attacker: CBCDEF

Server: False
Server took 2ms to respond

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 62

Password Checking

[How can this side channel be exploited? }

Attacker: CRCDEF

Server: False
Server took 2ms to respond

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Password Checking

“CHT".

Getting
warmer!

[How can this side channel be exploited? }

Attacker:
Server:
Server took to respond
T
Attacker: CHIDEF

Server: False
Server took 4ms to respond

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 64

Password Checking

[How can this side channel be exploited? }

Attacker: CHIEFS

Server: True
Server took 7ms to respond

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 65

Password Checking

[How can this side channel be exploited? }

=

Attacker:

Server: True
Server took 7ms to respond ~

Through timing analysis, attacker can infer the
correctness of individual password symbols!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Password Checking

Solution:

= 7?7

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Password Checking

Solution:
= Constant-time implementation (e.g., using bitwise AND-ing)
4)
bool checkPW(char *testPW, char *realPW, int len) { A - AND Q
B —
bool result = 1; // integer equiv of “true”
for (int i = 0; i < len; i++) { S e
0 o) 0
result &= ca[i] == cb[i]; 0 1 0
w
return result ~\\ | Guess: PASSEFGH .) 0
} .. Bit: 11116000 11171
} | Result: False
N . y

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 68

Password Checking

Solution:
= Constant-time implementation (e.g., using bitwise AND-ing)
4)
bool checkPW(char *testPW, char *realPW, int len) {
bool result = 1; // integer equiv of “true”
for (int i = 0; i < len; i++) {
result &= ca[i] == cb[i];
v
return result 5\\\ | Guess: PASSEFGH
b >~ <! Bit: 111106000
} | Result: False
N . y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Password Login Attempts:

ABCDEFGH PASSWORD
= False on last iteration

PASSEFGH PASSWORD
= False on last iteration

PASSWORD PASSWORD
= True on last iteration

True and False run
for identical time!

69

Password Checking

Implications:

= 7?7

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

Password Checking

Implications:

= Never use timing-unsafe string compares when handling sensitive data!

FreeBSD Manual Pages

I timingsafe_bcmp | [man] I apropos |

[3 - Subroutines v [FreeBSD 13.1-RELEASE and Ports | [All Architectures v| [html v|

home | help

FreeBSD Manual Pages

\ consttime_memequal] { man] { apropos]

[All'Sections v|[NetBSD 7.0 | [All Architectures v| [html v|

home | help

TIMINGSAFE_BCMP(3) FreeBSD Library Functions Manual TIMINGSAFE_BCMP(3)
NAME
timingsafe_bcmp, timingsafe memcmp -- timing-safe byte sequence compar-

isons

SYNOPSIS
#include <string.h>
int
timingsafe_bcmp(const void *bl, const void #*b2, size_t len);
int
timingsafe_memcmp(const void *bl, const void *b2, size t len);

CONSTTIME_MEMEQUAL(3) BSD Library Functions Manual CONSTTIME MEMEQUAL(3)

NAME
consttime_memequal -- compare byte strings for equality without timing
leaks

LIBRARY
Standard C Library (libc, -1lc)

SYNOPSIS
#include <string.h>
int
consttime_memequal (void *bl, void #*b2, size_t len);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

71

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Timing (and Power) Side Channels:
RSA Encryption

RSA for Confidentiality

Summary: Public key exchange
= Encrypt with 2??
= Decrypt with 2?2

Public key Public key Private key

Message Ciphertext Message
Sender — Encrypt Decrypt Addressee

Public key Private key

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

Recap: RSA for Confidentiality

Summary: % B Public key exchange %
= Encrypt with public key

Public key Public key Private key

= Decrypt with private key

H — Message Ciphertext Message
] Public key = (yN) Sender , Addressee
= Private key = (d,N)

To encrypt: ?

Public key Private key
= E(x) =x"modN

To decrypt:
= D(x) =xmodN

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

Recap: RSA for Confidentiality

To encrypt:
= E(x) =x"modN

To decrypt:
= D(x) =x%modN

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Modular exponentiation must
be implemented efficiently

Stefan Nagy

76

Modular Exponentiation

Decryption: D(x) = C P"VKe&Y mod N

e D\
X =C

for (int i = 0; i < len; i++){ e ™\

x = (x-x) mod(N) Does this decryption code

if (privKey[i] == 1){ reveal a security flaw?
= (x-C) mod(N
| } X (x-C) mod(N) L y
return X
. /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 77

Modular Exponentiation

Decryption: D(x) = C VK&V mod N

4)

x = C Bit-specific Operations:
privKey[i] == privKey[i] ==
for (int i = 0; i < len; i++){ 1. Findsquareofx 1. Find square of x

2. Take modulo N 2. Take modulo N
X = (x-x) mod(N)

if (privKey[i] == 1){
X = (x-C) mod(N)
}
}

return Xx
. /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 78

Modular Exponentiation

Decryption: D(x) = C P"VKe&Y mod N

>
x =C
for (int i = 0; i < len; i++){
X = (x-x) mod(N)
if (privKey[i] == 1){
X = (x-C) mod(N)
}
}
return x
/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

privKey[i] ==
1.
2.

Stefan Nagy

Bit-specific Operations:

privKey[i] ==
Find square of x
2. Take modulo N
3. Multiply by C

4, Take modulo N

Find square of x 1.
Take modulo N

Timing and power will differ
between key bits 0 versus 1!

79

RSA Power Analysis

[How can this side channel be exploited? }

- \\

A
4)
o /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 80

RSA Power Analysis

[Attacker can retrieve a user's private key! J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 81

Realistic Power Analysis

------- > Key = 1110111011..

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 82

Mitigations

Solution: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

Mitigations

Solution:
= Make critical code constant-time

... but what could go wrong?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Mitigations?

Solution:
= Make critical code constant-time

... but what could go wrong?
= Code may end up being compiled
without constant-time protection
= The code that you see may NOT be
the code that you will execute

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Breaking Bad: How Compilers Break Constant-Time

on specific code patterns to use or avoid. Examples include perform-
ing arithmetic operations to choose between two variables instead
of executing a secret-dependent branch. However, such techniques
are only meaningful if they persist across compilation. In this paper,
we investigate how optimizations used by modern compilers break
the protections introduced by deft i hni
Specifically, how compilers break high-level constant-time imple-
mentations used to mitigate timing side-channel attacks. We run
a large-scale experiment to see if such compiler-induced issues
manifest in state-of-the-art cryptographic libraries. We develop a
tool that can profile virtually any architecture, and we use it to run
trace-based dynamic analysis on 44,604 different targets. Particu-
larly, we focus on the most widely deployed cryptographic libraries,
which aim to provide side-channel resistance. We are able to eval-
uate whether their claims hold across various CPU architectures,
including x86-64, x86-i386, armv7, aarch64, RISC-V, and MIPS-32.
Our large-scale study reveals that several compiler-induced secret-
dependent operations occur within some of the most highly re-

Implementations
Moritz Schneider Daniele Lain Ivan Puddu
ETH Zurich ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland
moritz.schneider@inf.ethz.ch daniele.lain@inf.ethz.ch ivan.puddu@inf.ethz.ch
Nicolas Dutly Srdjan Capkun
ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland
nicolas.dutly@inf.ethz.ch srdjan.capkun@inf.ethz.ch

Abstract Keywords
The impl tions of most hardened cryptographic libraries Constant time code, cryp phic impl ion: pil
use defensive i T for side-ch 1 resi:
These tect are usually specified as guidelines to develop ACM Format:

Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas Dutly, and Srdjan
Capkun. 2025. Breaking Bad: How Compilers Break Constant-Time Imple-
mentations. In ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’25), August 25-29, 2025, Hanoi, Vietnam. ACM, New
York, NY, USA, 17 pages. https:/doi.org/10.1145/3708821.3733909

1 Introduction
Since the discovery of timing attacks [24], side-channel vulner-
abilities have been one of the major concerns for developers of
security-critical code and libraries [21]. Particular attention and
expert knowledge are devoted to avoiding side-channel issues in
security-critical libraries. Three main hardening techniques ap-
T hes are lly followed: i) manual bly hardening, ii)
using special compilers that provide constant time guarantees, and
iii) hardening the source code. However, all of these approaches
suffer from practical limitations.

The first option is vetting hand-written assembly either by a de-

veloper [43] or with automated tools [10]. However, this limits code

Stefan Nagy

85

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Cache-based Timing Side Channels:
Spectre & Meltdown

CPU Caches

RAM is expensive to load from Storage Read Time = Capacity Managed By
= Disk is even more expensive! ,

Hard Disk 10ms 1TB Software/0S

Fastest retrieval: ??? Flash Drive 10-100us 100 GB Software/0S

RAM 200 cycles 10 GB Software/0S

https://computationstructures.org/lectures/caches/caches.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

CPU Caches

RAM is expensive to load from
= Disk is even more expensive!

Fastest retrieval: the CPU cache

= Small storage built-in to CPU
= Common hierarchy: L1, L2, L3, L4

Key purpose: accelerate retrieval
of commonly-accessed data

Storage Read Time = Capacity Managed By
Hard Disk 10ms 1TB Software/0S
Flash Drive 10-100us 100 GB Software/0S

RAM 200 cycles 10 GB Software/0S

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2-4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

89

Program Execution

What do you expect to happen here?
= index < arraySize int read(int index){
= ??? int result = -1;
result = array[index];
return result;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Program Execution

What do you expect to happen here?

index < len(array)

int read(int index){

Within-bounds read... success
index > len(array)

int result = -1;

result = array[index];

return result;

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Program Execution

What do you expect to happen here?

= index < len(array) int read(int index){

= Within-bounds read... success int result = -15
= index > len(array) result = array[index];
= Out-of-bounds read... prevent return result;
}

-
g

Optimization: Speculative Execution
= Perform the OOB read anyways

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 92

Program Execution

What do you expect to happen here? | |
= index < len(array) int read(int index){
= Within-bounds read... success int result = -1;
= index > len(array) result = array[index];
= Out-of-bounds read... prevent } return result;
Optimization: Speculative Execution \

= Perform the OOB read anyways

= Cache whatever data is accessed Save time by having data

u Check if it's allowed... after the fact pre_cached a nd ready to gol
= Roll-back the cache to correct state

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

93

Program Execution

Implication: data we shouldn’t have access
to (e.g, from another program) is cached

Cache lookup is faster... can we exploit a
timing side channel to recover this data?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 94

Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

// index > len(array)

int read(int index){
int result = -1;
result = array[index];
return result;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 95

Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

()

// index > len(array)

int read(int index){
int result = -1;
result = array[index]; =
return result;

r

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

7

-

1. Cache []

2. Bounds check

3. Cleararray[index]

Due to roll-back, we
can’t retrieve result!

Stefan Nagy 96

Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

// index > len(array) P 4 1. Cachearray[index]
int read(int index){ 7
ot peeils = o /I 2. Cache hugeArray|[result]
result = array[index]; - - 3. Bounds check index, result
int dummy = hugeArray[result];
return result: 4. Clear array[index]
N) J 5. hugeArray[result] stays...

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 97

Attacking Speculative Execution

[How can attacker figure out result is 4440? }

z aah0
for (int i=@; i<...; i++){ B l----" Pesulft
I
int x = hugeArray[il]; @ Iy
o Ly
} o y
: "
\/7 . - i
index

Since 4440 was cached, hugeArray[4440]
has the fastest access time of all array indices!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 98

Attacking Speculative Execution

Widespread: affects nearly every s
device (laptop, phone, etc.) I
= Both ARM and Intel variants
= Fully breaks process isolation
[- On 27 March 2017, researchers at Graz h O
University of Technology developed a proof-of-
concept that could grab RSA keys from Intel

SGX enclaves running on the same system

within five minutes by using certain CPU ¢
instructions in lieu of a fine-grained timer to S P E CT R[
exploit cache DRAM side-channels.[*"] MEI.TDOWN

J

\.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 99

Mitigations?

Can CPU-based side channels be practically fixed?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Mitigations?

Can CPU-based side channels be practically fixed?

= Not really... must disable speculative execution
= Goodbye performance!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 101

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Hardware Security

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 103

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The foundation
of our computers

Hardware

Applications

Operating System

Hypervisor

Firmware

Hardware

Stefan Nagy

104

Hardware

Applications
\
(N\
Operating System (&)<

| p g oy 229
The foundation - \ Weaknesses weaken
of our computers Hypervisor oo the entire system

S > i < s
N /
\ Firmware x@; 7
N L v 7
\ e ™\ /
\ Untrusted Hardware ’
_ J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

Hardware

-

FORESHADOW
Weaknesses weaken
the entire system

The foundation
of our computers

N\

/ cf;
B [Untrusted Hardware J ¥ @
SPECTRE

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 106

Creating Hardware

Design Time

ENTITY test
:D—* porta:in;
end ENTITY,

-~ - -~

Text HDL

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Creating Hardware

Design Time

ENTITY test
porta:in;
end ENTITY,

Similar to software design

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test frs”
port:in o %
end ENTITY; o[o

L 1/

T -~ ~
GDSII Wafer/ Die Chip / PCB

Similar to software design

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 109

Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test o amm”
; \
porta: in; g
endENTllTY; o0 o | /J %
— o W » L e ~
Netlist GDSII Wafer/ Die Chip / PCB \'
‘ -
o
Similar to software design Required to build a physical device
e Stefan Nagy 110

Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test o amm”
rt:'; 8] \
st e | R | R
— o W » L e ~
Netlist GDSII Wafer/ Die Chip / PCB \'
‘ -
o
Similar to software design Required to build a physical device
Verification Testing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

Hardware Bugs

Cannot be patched
following Fabrication

Design Time
|
: Fabrication
I -]
ENTITY test I)
) > porta: in) f
7>] end ENTITY : /] W &
\ :
Text HDL Netlist GDSII Wafer/ Die Chip / PCB
Similar to software design Required to build a physical device

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

112

Hardware Bugs

Cannot be patched

Design Time following Fabrication

Fabrication

|
|
1
| = — o
ENTITY test T L/ ek 5
7:7 > port&: in : \] W ,\s & .
\ :
Text HDL Netlist GDSII Wafer/ Die Chip / PCB
Similar to software design Required to build a physical device
e Stefan Nagy 3

Hardware Bugs

FORESHADOW 0%

SPECTRE

SCHOOL OF COMPUTING Stefan Nagy 14

UNIVERSITY OF UTAH

Hardware Threats

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 115

Hardware Trojans

Trojan Horse:

=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

Hardware Trojans

Trojan Horse: e
. : : Sl Circuit
= Attack pre-inserted into chip o Output
= Will be exploited at run time CI:”CLf(' t e T I o 2 >
= Remotely triggered by attacker VIR

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 117

Hardware Trojans

Trojan Horse: e
. . . Hardware Trojan Circuit
= Attack pre-inserted into chip . Okt
: . . Circuit s P
= Will be exploited at run time | ; rrigger | [vigaer [payioes [HE2I0%G >
= Remotely triggered by attacker VIR

Ideal characteristics:
= Small
= Stealthy
= Controllable

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

Hardware Trojans

Trojan Horse:
= Attack pre-inserted into chip
= Will be exploited at run time
= Remotely triggered by attacker

Ideal characteristics:

= Small
= Stealthy
= Controllable

Engineering a trigger

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

e N
Division sets
div-by-zero flag
_ Y,
e N

Addition resets
div-by-zero flag

\. J

(~ 1~ void attack_signed_c() { N\
2 volatile int a, b, c = 0;
3
4~ while(1) {
5 int c1 = c;
6 int bl = b;
7
8 int i1 = ((b1 / c1) + 1);
9 int i2 = ((i1 / c1) + 1);
10 int i3 = ((i2 / c1) + 1);
11 int i4 = ((i3 / c1) + 1);
12 int i5 = ((i4 / c1) + 1);
13 int i6 = ((i5 / c1) + 1);
14 int i7 = ((i6 / c1) + 1);
15 int i8 = ((i7 / c1) + 1);
16 int i9 = ((i8 / c1) + 1);
17
18 a=((1i9 / c1) + 1);
19 }
N J

Stefan Nagy

Software state will
affect analog state!

119

Hardware Trojans

~

(sraeli sky-hack switched off Syrian radars
countrywide

Backdoors penetrated without violence

A Lewis Page Thu 22 Nov 2007 13:57 UTC

More rumours are starting to leak out regarding the mysterious Israeli air raid against Syria in
September. It is now suggested that "computer to computer” techniques and "air-to-ground network
penetration” took place.

The latest revelations are made by well-connected Aviation Week journalists. Electronic-warfare
correspondent David Fulghum says that US intelligence and military personnel "provided advice" to
Qe Israelis regarding methods of breaking into the Syrian air-defence network. /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 120

Recycled and Counterfeit Hardware

Guin et al.: Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain

1600 -

1400

1200 -

1000 +

800

Russia is resorting to 600

putting computer chips pey

from dishwashers and "

refrigerators in tanks . l
0+ —— T T T T T T

dU? 'I-:O Us sanctlons, 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
official says

S

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Recycled and Counterfeit Hardware

Counterfeit and recycled chips have a shorter lifespan
= Absolutely dangerous for security-critical use cases

Failure rate
Shorter time to fallure

Infant ' — Wear-out

rtality;

stage

>

Brand new Counterfeit Wear-out Usage time

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

122

Recycled and Counterfeit Hardware

Counterfeit and recycled chips have a shorter lifespan
= Absolutely dangerous for security-critical use cases

Strong 0 Weakly Biased Strong 1
0.5 A i \i’

0.4 1

Proportion
IS
w

o
[N)

0.1 A

0.0 - f f y
0.0 0.2 0.4 0.6 0.8 1.0

Cell Bias

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 123

Secure Hardware

Can we ever know for sure that a chip is secure?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 124

Next time on CS 4440...

Cyber-physical Systems & loT Security

